IMPACT OF HARDHARE/SOFTWARE FRULTS ON SVSTEH
EL PROCEDY. . ()

MARTIN MARIETTA
DEC 85

C SOISTHRM ET AL

1

BN -

A
3

»

AT,

1 AL

"0 e B 2
=« E‘ 1122
iy B
= | 122
JL2s s i

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

X Rl

ORI ".‘-.-‘.-.\ o
., -\.\.

L;{Afr‘..x.{‘.u& PR

N
™
N
L
O
-
h
Q
<

OTiC FiLE COPY

RADC-TR-85-228, Vol il (of two)
Final Technical Report
December 1985

IMPACT OF HARDWARE/SOFTWARE FAULTS
ON SYSTEM RELIABILITY Procedures for
Use of Methodology

- DTIC

Martin Marietta Orlando Aerospace ZLECTE
MAR 1 8 1896 _
¥ o
Edward C. Soistman and Katherine B. Ragsdale - N tamiste o

APPROVED FOR PUBLIC RELEASE DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

8¢ S 13 191

T ——————— CBam B ag s e

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nationms.

RADC-TR-85-228, Vol II (of two) has been reviewed and is approved for
publication.

R / —
APPROVED: (/‘(.f/““c-- e lea:

EUGENE FIORENTINO
Project Engineer

W. S. TUTHILL, COLONEL, USAF
Chief, Reliability & Compatibility Division

FOR THE COMMANDER: ib ! L Ci ¢) 2;5

JOHN A RITZ
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC mailing
list, or if the addressee is no longer employed by your organization, please
notify RADC (RBET) Griffiss AFR NY 13441-5700. This will assist us in main-
taining a current mailing list.

Do not return copies of this report unless contractual obligations or notices 3
on a specific document requires that it be returned, ©
’ <

. . . L
C - AR - . PRI oS e L . R R . .
(PR TN W K. WINPT U US TI TW T VG PR ST ST NV SRV SRS I I S S s ee Ov o UE . & . AL N VTR W VW

B N L T S TR NI PO
1 OO YR oy
o)
’ h'\}"
NSO
) "-".\
p. Bl B
1
. " -.
S
A
,;'.".-.
. N\ 7D T
N 4745 232-
ORITY FICATION OF THIS PAGE < PN
”

AT

REPORT DOCUMENTATION PAGE

T I TIPS YT T T e ———— TS
1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS -
UNCLASSIFIED N/A et
Za. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABILITY OF REPORT OO
I N/A Approved for public release; distribution Ry
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE unlimited. e
L]

3. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

OR 18,173-1 RADC-TR-85-228, Vol II (of two)

62. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL | 7a NAME OF MONITORING ORGAN!ZATION

Martin Marietta (if applicable)

orlando Aerospace Rome Air Development Center (RBET)

6¢c. ADDRESS (City, State, and ZIP Code) 7b ADDRESS (City, State, and ZIP Code)

P.0. Box 5837

orlando FL 32855 Griffiss AFB NY 13441-5700

8a. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (If applicable)
Rome Air Development Center RBET F30602-83-C-0050
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
Griffiss AFB NY 13441-5700 ELEMENT NO. INO. NO. ACCESSION NO.
62702F 2338 02 96

11. TITLE (Include Security Classification)
IMPACT OF HARDWARE/SOFTWARE FAULTS ON SYSTEM RELIABILITY Procedures for Use of Methodology

12. PERSONAL AUTHOR(S)
Fdward C. Soistman and Katherine B. Ragsdale

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) IS PAGE COUNT
Final FROM _Mar 83 10 _Jan 85 December 1985 104
16. SUPPLEMENTARY NOTATION
N/A

17. COSAT! CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Reliability
i 14 4 i Software Quality

9 2 Hardware/Software Reliability Prediction

i 19. ABSTRACT (Continue on reverse if necessary and identify by block number)

““)The objective of this study was to develop techniques, for predicting total system relia-
bility, which include the combined effects of software and hardware. Since hardware
reliability techniques are much further developed, the study emphasized methods of
characterizing software reliability. The software reliability prediction methodology

.

'{' contained in the report is compatible with hardware reliability techniques and definitions
‘::. and is applicable during early development so that the predictions can influence the design
“n and development process.
LR

2 ’ The software reliability prediction techniques use both software product and development
t"ﬂ process characteristics to develop estimates of the reliability of the various software
; components which comprise the system. The software component reliabilities are combined
;f' via a Markov model to obtain estimates of software system reliability. Estimates of the —} O ~-%
r
,-xf: 20. DISTRIBUTION / AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
9. @unclassiFiepunumiteo O SAME AS ReT [oTic USERS UNCLASSIFIED
f:’ 22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) | 22¢. OFFICE SYMBOL
j.:' Eugene Fiorentino (315) 330-3476 RADC (RBET)
S‘:{ DD FORM 1473, 84 mar 83APR :ﬁ‘;‘t‘:‘“r’“?t"‘ used ‘"‘b‘" T"t’“““ed- SECURITY_CLASSIFICATION OF THIS PAGE
{“. er editions are opsolete. UNCLASSIFIED
3
R
)
ey

5 ot R0 l-\-.-.y A v.‘_‘

'4.3'.1.. Lt e
A e < ":vz‘i-,r: I

LI U AR VL IV N N T I -
N e T St e R e e]
« Lo RN S S R) ..h'b”\')%,'!?)’b‘ 'P)\"’

)

& e h

o T Y e S
R R O GG 06 AR NN,

.
By
.

UNCLASSIFIED

7/ execution frequencies of the various software components, as a function of the mission
profile, are required by the methodology.

Procedures for application of the techniques are provided and are intended for use by
a reliability engineer having a basic knowledge of software engineering practices.
The techniques offer a rudimentary framework for predicting total system‘(ﬂw~&«swa"4<
reliability. Validation and refinement of the techniques using software development
and field reliability performance data remains to be accomplished.

17, COSATI CODES (Continued)

Field Group

18 03

RS

> el

Te

oy

A

J.r'?

UNCLASSTIFIED

——
P
WN -

1.4

1.5

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

I OO0 >

TABLE OF CONTENTS

Overview and Objectives
Approach
Procedure

1.3.
1.3.

Preliminary Analysis

1.0 PROCEDURE FOR UTILIZATION OF THE COMBINED HARDWARE/SOFTWARE
RELIABILITY PREDICTION METHODOLOGY

1 .
2 Calculate the Software Rellab111ty

Examples

Detection and Warning System
Assault Breaker

Summary

FUNCTIONAL DECOMPOSITION .
FUNCTIONAL FLOW DIAGRAM .

MISSION THREAD ANALYSIS .
INDIVIDUAL COMPONENT CHARACTERISTICS
INDIVIDUAL COMPONENT RELIABILITIES
OVERALL SOFTWARE RELIABILITY
DETECTION AND WARNING SYSTEM
ASSAULT BREAKER
WORKSHEETS

Accesion For \
NTIS CRA&I 9
DTIC TAB 0
Unannousiced O
Justification

By

Distribution |

Avaifability Codes

Avail and|or
Dist Special

LS S

~

~¢

A-1
B-1
c-1
D-1
E-1
F-1
G-1
H-1
I-1

mmun
INSHLOTED

3

WY T TN T T T T T T T T T T e T v vy oy o _ " T = - - -

ha) LIST OF FIGURES

& Figure |. Parallel Hardware and Software Techniques 3
i{j Figure A-1. Software Decomposition Process and Terminology A-3
Y Figure B-1l. Equivalent Logic Representations B-3
ey Figure E-1. Relationship of R(I), R(C), A and D .« e+ E-6
,i Figure G-1. Functional Flow Chart G-9
.:) Figure G-2a. Track Module Worksheet No. 1 G-10

% Figure G-2b. Track Module Worksheet No. 2 G=11
:‘ Figure G-2c. Track Module Worksheet No. 3 G-12
s Figure G-2d. Track Module Worksheet No. 4 G-13

: Figure G-3. Annotated Flow Chart G-1l4
> Figure G-4. Computer Output « ¢ ¢ « « 4 ¢« 4« 4« « v v o o « « . G=15

. Figure H-1. Functional Flow Diagram .. H-7
P Figure H-2a. Antenna Select Module Worksheet No. 1. H-8
U Figure H-2b. Antenna Select Module Worksheet No. 2 . . H-9
Jb{ Figure H-2c. Antenna Select Module Worksheet No. 3 H-10
s Figure H-2d. Antenna Select Module Worksheet No. 4 H-11
Ty Figure H-3. Annotated Flow Chart H-12
W Figure H-4. Computer OQutput - « + « « + « « v « « « « « . . H-13

|
b
(el
'k 1]
),
v§|‘
30
(i
v
NL.--.
-

'r}

>4
W
AN
Yo
o
2
-

" -
i3 i
P‘:\‘: !::
39 8

“ R
L
N
NI
120

o

!

Pt
AN
;” . iv

5

TR TP O TR O e Ty P O L T P Sy - Y d 4 ? 3 P S T T TV OV TP T ‘—-.r.“
. o)
k :". X -"-
[
l‘ < -~"
t
4, X4
g ;:_
-
; I
..' ‘ P8t
)

¢ LIST OF TABLES 7]

L) (»
Table D-1. Inherent Characteristics D-3 T

N Table D-2. Error Avoidance Characteristics e e e e e e e e e e e e D-5 Rt '<
5 Table D-3. Error Detection Characteristics D-8 A)

i '_~. 4
]. :‘\-'
] -

’ -

» . "_‘.

5 Dy
i - L
AN ot
Vel B!
1% Y

¢ -l

td N .
B AP
b ~ PR
| .. ¥y
‘1N I.\-:
N Cw e

" R 0

g "
) G
).
kY- o
) i

\J h) .(_S
) s
P '.:‘é f
5 o

. Rl
1 ROk
B e
L t-:-{ ,

3 -

5 t'-.'

' [t
{ Iy
e -

" epon
'\l L:\' "
» A
- 2
-‘~ « ¢
N 3

'
-

aa 2 4

5 ¥, " "”"

F

LA
!

) T,
I:yb

N

A,

i

Nt

: : 1.0 PROCEDURE FOR UTILIZATION OF THE COMBINED

e HARDWARE/SOFTWARE RELIABILITY PREDICTION METHODOLOGY

NS 1 1 Overview and Objectives

S

E}: The prediction methodology described below was developed by Martin
SRS Marietta Aerospace as part of a Research and Technology contract performed
> for the Rome Air Development Center (RADC).

O

- Although many models exist for measuring and estimating total system

hd reliability, very little is available ro assist a procuring agency or soft-
'¥ ware developer in predicting system reliability during the early phases of
)¢3 the Development Life Cycle. Specifically, there has been no software
i equivalent to MIL-HDBK-217D. Quantitative evaluation of software reli-

ability follows two extremes.

¥
‘:? At one end of the spectrum, research has involved the psychological
‘}}: aspects of computer programming by considering the mental processes

{'- performed during software creation. Although this basic research is very
o interesting and may eventually lead to very sophisticated automatic program
¢ generators, it is too detailed and imprecise to be usable by a system

e planner or analyst.

:;f At the other end of the spectrum, many mathematical models are avail-
b able to measure and estimate software reliability based on historical

(j failure information. These models are extremely valuable, but not until a
T system is actually developed. They are of little value to a planner who
oA must be able to predict reliability based on the nature of the mission and
~L the intended method of development,.

e The methodology described here was developed specifically to fill the
-;{ void. Although it lacks the academic generality of psychological

approaches and the statistical accuracy of measurement and estimation
methods, 1t provides a prediction tool that can be used early in the life
cycle ot software development; a time when alternate approaches can be

s ()

:‘x- evaluated and cost tradeofts can be performed. Specific features of the
fx{ methodology include:

BN

2-; 1 Applicable during early design/development

!{? 2 Applicable throughout the development cycle

-

S0 3 Yields quantitative reliability predictions

3N

o 4 Utility as a design and process evaluation tool

fi- 5 Uses the operational mission scenario as a basis for prediction
<o

'il- 6 Compatible with MIL-HDBK-217D techniques and reliability

M definitions.

ii

r '.‘

«.:_

T,

=

W

NS
-F‘f'-,"\
R TR PRy i I AN S A

>
)]
s

[x o s

-
VR e A

.
L il 7]

1

-

". ._- l-. 4

B

1.2 Approach

The methodology was developed to maximize the parallelism of software
reliability prediction and classical hardware techniques (Figure 1).

Although the sequence of steps for performing a software reliability
prediction are nearly identical to those for a hardware analysis, the
terminology, procedures and techniques differ quite extensively.

Whereas hardware components fall into some generic class based on
their electrical construction and material composition software components
are categorized by their logical makeup and purpose. Like hardware, soft-
ware has intrinsic characteristics that can generally be used Lo classify
it and obtain a starting or base reliability. Generally, these character-
istics are identifiable by the functional requirements imposed on the soft-
ware before it 1s even designed. For example, a software component that is
required Lo operate in real time tends to be more error prone than one that
operates 1n a batch environment.

Hardware component reliabilities are adjusted by pi factors determined
by the various aspects of their development and operational environments.
Factors such as stress, environment, quality, temperature, and technology
must be identified and applied to component reliabilities before they can
be ilncorporated into the reliability model. Fortunately, MIL-HDBK-217D
provides extensive lists of factors for virtually all situations.

Software component reliabilities are similarly adjusted based on the
environment in which the software is developed. Software is immune to
stresses as used in hardware analysis, such as temperature and vibration.
Software is pure logic, with no physical nature. Its reliability is
affected by the characteristics of the software product which predisposed
it to error and the manner in which errors are avoided or detected and
corrected. These are the only pi factors of concern to software reli-
ability prediction. Unfortunately, extensive lists of factor data similar
to that provided by MIL-HDBK-217D for hardware are not available. The
appendices to this document present factors that were,derived from a rel-
atively large survey of software experts. Statistically, the survey data
provides an accurate representation of what practitioners believe the
factors to be. Currently, it is the best available data. Although the
data avallable at present is not based on extensive analyses or experi-
mentation, the methodology is sound. As more precise data becomes avail-
able, the factors and their values may require revision. However, the
method should remain intact. Even with imperfect data, the method will
provide relative tigures of merit for the analyst to compare alternate
approaches to sottware development. The methodulugy and the data provide a
tramework tor the creation of a software handbook similar to MIL-HDBK-217D.

M1L-STD-785B prescribes the manner in which hardware reliability block
diagrams are to be resolved. Methods of combining serial components,

'\

(I WY A A e Y
PRt

n"_lu R

v

The hardware subsystem is
decomposed into lower level
subsystems

The software subsystem is
decomposed into its lower
level computer programs

Decomposition continues
until a component level
is reached

Decomposition continues
until a program module
level is reached

Component reliability 1s
predicted based on the
inherent physical charac-
teristics modified by pi
factors, which account

for its intended operating
environment and usage

Module reliability 1is
predicted based on 1its
inherent functional
characteristics modified
by an enhancement factor,
which accounts for the
process used to develop it

System hardware reliability
is predicted by combining
mathematically the component
predictions in accordance
with the physical/electrical
configuration of the hardware

System software reliability
is predicted by combining
mathematically the module
predictions in accordance
with path usage probabilities
based on the mission scenario

Figure 1. Parallel Hardware and Software Techniques

]

» e _a
- ap

Ty
L)

L T
L.

TaTa ooy
WG YN T R

»

RN
PIn r

g

e
PRV Gy et

R

e
-‘.'-

g

I
P

Py

" i

. . A
T

OO

s a

)
-t
HaPRE

"

R

P
Fel

] oo

I
- B .
L TN . SR R
" .) .-_"..._' < - - Rk A
L T e e Lo . - -.'. .
el . .(". PRI Rl e e e
) .A.eL.z-'.{f'.a_.a m ...L.E}‘A.c. .~’- P ‘r;h., e x .-.‘..-{..x-a‘q‘,ku

-\.n

-
parallel components, redundant components, etc. have been well developed Ol
and practiced by hardware reliability engineers for some time. With few N
exceptions, classical combinatorial techniques used for hardware analysis.
are not usable for software analysis. A logical path through a computer W
program 1s a straightforward serial arrangement of critical components, If :{f
there were only one path through a computer program, its reliability would {{.
simply be the product of the reliabilities of each software component in :H
that path. However. there are typically thousands, and often a nearly A

infinite number of paths possible. The reliability contribution of each

software component becomes a conditional probability. It is the probabii- <
1ty that the component will operate successfully, given that it 1s executed)
1n a particular path. Obviously, the computational aspects of evaluating
thousands, or millions, of conditional probabilities are not feasible.
Fortunately, a mathematical technique 1s avallable to alleviate this Y
sltuation.

Determining system reliability from the computed hardware and software 3
reliabilities is again slightly different from normal hardware analysis. <.

Software reliability is not directly a function of time, but rather a func- -
tion of the particular mission scenario that it is required to perform. .
Whereas hardware 1is usually considered to have a constant failure rate for =
a particular mission and environment, software can be considered to have a T
fixed reliability over a given mission duration and input eavironment. To e
determine system reliability, we must multiply software and hardware reli- ;v

abilities.

Lastly, it must be again emphasized that software reliability is
critically mission dependent. Although individual software cowponent el
reliabilities will not change. their execution frequencies will change for 2
different missions. Whenever a different mission scenario is to be
evaluated, the software subsystem reliability must be recomputed. ;

1.3 Procedure

Application of the reliability prediction methodology 1s relatively N
simple. The steps are performed in sequence using tools common to software
engineering. Since the methodology does not 1mpose any restriction or o
special conditions on standard hardware prediction techniques, the classi-
cal methods of MIL-STD-7853 and MIL-HDBK-217D can be separately applied, .
without alteration, for all hardware components of the system under analy-
s18. Sottware reliability prediction 1s accomplished as described in the
following paragraphs.

.

.

.
0

s
.

2

1.3.1 Preliminary Analysis

Before using the computational aspects of the methodology, it 1s

essential that preliminary analysis of the software system be accomplished. N
The following are typical software engineering activities that are ::
accomplished during the preliminary design phase of a software development e

-
.

¥ oo o am nad vad o g ’ VRTINS R Saloaald tale ool ngll -alh bl bolh uah ol ceflosel Soke sk wule e b iad cal nall el st sl)

R

i

ettort. They are considered to be good engluneering practices independent
ot their usage ftor reliability prediction.

Perform A Functional Decomposition (Appendix A)

During preliminary design of a software product, 1t 1s necessary to
allocate every functional requirement of the software subsystem to the
identifiable and separable components of the total software product. Among
y the products of this phase is a list of software components (e.g., modules)
a1 and their individual functional requirements. Analysis cannot proceed
3 until this step is completed.

Construct A Functional Flow Diagram (Appendix B)

M After all components of the software and their indivicual requirements
oy have been identified, it 1is necessary to show thgir functional relation-
158 ships to each other. A functional flow diagram is a tool that can be used
;fpﬁ for this purpose. Other tools are also available and may be used in the
':~ analysis. The important output of this phase of the analysis is to clearly

"
E
13

understand how components pass control to one another. Results of this
analysis will be used directly in latter phases of the reliability predic-
tion.

’]
4
5

¥
®
=

.'1m‘.

S Perform A Mission Thread Analysis (Appendix C)

When the tunctional tlow diagram just described is completed, 1L 1is
A necessary Lo assign path probabilities to each decision point depicted.
e For a given mission, each individual branch must be evaluated to determine
(or estimate) 1ts probability of execution, given that control has reached
the branch point. During the preliminary design phase of the development
effort, these values will probably be rough estimates. As the design
becomes better developed and understood, the data can be updated to afford
greater precision. For real-time applicat.ons, these values are critical
to the engineering process itself and should be available early in the
design phase.

Identify The Individual Component Characteristics (Appendix D)

The reliability of each software component is predicted based on its
inherent characteristics (attributes of the software PRODUCT) and its
developmental characteristics (attributes of the software development
PROCESS) .

The functional requirements for each compone.ut are known to the
analyst as a result of the functional decomposition described earlier

oY (Appendix A). The inherent characteristics used within the prediction
AT methodology are defined in Appendix D and included in the worksheets

:{f{ (Appendix 1). The analyst must i1dentify the appropriate characteristics
o for each sottware component within the overall software subsystem by

:{uf choosing those which best describe the tunctional requirements. By using
e

€.

a_.a
«

. f..

LI i T S

» N0
.
R

A
(Val

VY

T RUTT—— . . NP sl vy X
W
c‘.:| r::'
WLt e
"ty o
o N
('])
g s
B " w =
!‘2 ﬁ\
oy : , o
Ary the worksheets provided, the analyst can determine the types of errors most Sy
. likely to be encountered during the development process.
1 .) =
Ty The techniques to be used during software development must also be N
! % identified at this time in the analysis. The techniques can be classified -
185, as being either an error avoidance technique or an error detection tech- ™
} - nique. The techniques used within the prediction methodology are also N
{)

defined in Appendix D and included in the worksheets (Appendix I).
Typically, the techniques to be employed (structured approaches, independent

s

4

=
_\:- test, etc.) are identified in a Software Development Plan or equivalent -
g document. Such a plan is considered to be good engineering practice and is .
B o usually a required, deliverable data item for DoD contracts. By using the -
}ij worksheets, the analyst can determine the collective effectiveness of the -1
Hh planned techniques for the type of errors expected.
:}cj 1.3.2 Calculate the Software Reliability .
e , -
- Compute Individual Component Reliabilities (Appendix E) o
s 3
o Individual reliabilities are computed in accordance with the methods o
o derived and described in Volume I of this report. The technique is
3&- described briefly in Appendix E. Worksheets have been devised to simplify
ujg the computation process. Having already gathered the individual component n
:&SQ characteristic information just described, the analyst simply performs the ¢
538 operations described on the worksheets. The only computations involved are 5
- simple addition, multiplication, and division, which can be performed .
either manually or with a small calculator. ;
fq\:'; r’:"
oy Compute Overall Software Reliability (Appendix F) "
L s
ARG After the individual component reliabilities have been calculated and Y
N the path probabilities (described under functional thread analysis) are
:)‘ known, the analyst must construct a transformation matrix as described in 4
‘G{ Appendix F. The matrix is actually a representation of all of the joint BN
‘ﬁ{. probabilities of a component successfully executing and passing control to -
SN the next compoment. Calculation of the overall software reliability o
’:ﬁ involves the inversion of this matrix and could involve relatively complex -
Lo mathematics. Although matrix inversion can be accomplished manually for N

o) software containing relatively few functional components, it is highly

?ﬁ desirable to computerize this step of the analysis. ﬁ

., A

p 1.4 Examples X

: A

e . "
‘LR Two examples have been included to demonstrate the methodology it
4 application.

. ' \

? 4: 1.4.1 Detection and Warning System (Appendix G) .

méﬁ This example was created specifically for demonstration purposes. It ?

Wy describes a typical, albeit simplified, software application. The software i
=Y.

A "
A3 -
) -‘\' =

‘ 'ﬂ Y

- v."'.“\;h“.-‘.‘.b‘ hl \l‘“ . \ Y\\' \‘\' M Y ﬂ.
e .;.'\-". _-{\3‘* _' "\-.\' f

NETES
rer A n"

..c |h g‘.‘h

Y,
.
PR «

-
RV e
4

L

Py

Seeexe | 177

»

Pttt e 4o
[l

.'c '1‘5‘
afata’a

h)

0 2%
1R a P
A]La':g‘ ﬁ-

D n.'; ;‘: .\:,k-)

-« 1

.
e fefe 'l

.
1 ae %%

{"‘,l

>
A
»

-
X
.

x5

L)
3

¥
C'.

f.f.’('u

“"J"a'f<,_-

-.w

- 6

receives target data from some sensor. If the data meets certain correla-
tion criteria, an acquisition mode is initiated and the target is tracked
assuming that the acquisition was successful. If the tracked target is
hostile, a report is generated. In any event, the system returns to the
search mode of operation.

1.4.2 Assault Breaker (Appendix H)

This example was taken directly from a completed Martin Marietta
software development project. Assault Breaker software was responsible for
guidance and control of a tactical missile. The software was required to
operate 1n real time with relatively precise timing constraints. It was
developed using modern top-down, structured design approaches and was
thoroughly documented during its development. This software was chosen as
an example because Lt demonstrates the effectiveness of some software
techniques and represeants a good example of the manner in which path
executlon probabilities can be determined.

1.5 Summary

The methodology presented here provides a workable technique for
determining software reliability information at any stage of software
development, subsequent to preliminary design. It can and should be used
recursively throughout the development process to evaluate the approaches
being taken, to alert management when reliability predictions fall short of
required performance criteria, and to evaluate the impact of alternate
approaches.

Appendix I includes copies of the worksheets required for analysis.

"‘ﬁ e e A e e o et T e T
‘- *.“ o _:.‘.._,- (r?w o ('_._. ._,“.J_‘,.‘,'._b_\‘...'_._,,..,_‘. e

.'-

() o »

4

- O - - = o > e e o o - ’ o - y - N . “ - e WoWTETANS

oy
: .
\. |3 .'l
Y ‘.-

U add
s,

i

202

LS

ty

l. ‘ﬂ'
-_‘u "'-
= 3
& 13

o &
P .\".
2
i i
\/ o) b'
T
[]
™ 2
15 -
o APPENDIX A o
b ..)-:'\ "
3 .{'." Lo ’
8- FUNCTIONAL DECOMPOSITION =
I
&3
\.h
PR} -

e <
P &
.' - S
N,
&
..
- » h‘

: ..:\
A o
F l"’ .“-
o A

DR :
¥ .,“.__s_.su»{ -.\ﬂ

)
4 ,".-"l‘ [-.‘\-

5

.
CRiCRN

Ay Ay Ay gy

FAR)

- .‘: -'-’ hY
V] .

P I"f

1.0 INTRODUCTION

Decomposition of computer software is accomplished much like hardware.
Whereas hardware subsystems can be segmented wherever a connection has been

(or will be) made, software can be broken anywhere in the sequence of com- Qﬁ
mands that 1t executes. In both cases, however, it is 1illogical to discon-— :;
nect components except at the physical (or logical) boundaries of complete ;j
subunits. For hardware we might decompose a system into black boxes, NS
decompose the boxes into printed circuit boards, decompose the boards into ;

circuits and finally decompose the circuits into their respective electri- ~:
cal components. It is essential that every phase of the process yields }f
complete subunits. Computer programs are similarly decomposed. —;

Figure A-1 illustrates the generally accepted terminology associated
with software decomposition. It lists the terminology specified in the

proposed military standard DoD-STD-2167 and has been extended to the lowest o
possible level by this author. At the highest level, software is defined e
as a configuration item, one which is defined by and for the procuring }i'
agency. It has considerable contractual significance but has no logical or 8¥
functional characteristic. At the other end of the spectrum, the level of

detail is so specific that prediction is not possible until after imple-
mentation,

Although the software prediction methodology is not affected by the
level to which the software is decomposed, it is practical to define its
aprlicability as ranging from CSC level through the module level. Gener-
ally, CSC level decomposition is possible during the requirements defini-
tion phase of software development, unit decomposition Ls possible during
preliminary design, and module decomposition is possible during the detailed .
design phase. At each milestone the software reliability prediction meth- -
odology can be re-applied with greater accuracy. For generality, the term -
"software component” is used to include all levels of sottware decomposi- "
tion between the CSC and module level, x

¥
o o

..

>
}
[

-
<

COMPUTER SOFTWARE CONFIGURATION ITEM (CSCI) -~ software aggregate which is

L designated by the procuring agency for configuration control
)]
I

v s | p

3:% ‘\— —-COMPUTER SOFTWARE COMPONENT (CSC) - a functional or logically :

:ﬂéJ distinct part of a computer software configuration item K

" - |

2 l :

: |

;ﬁ) L —-UNIT - the lowest level logical entity specified in the _

{51 detailed design which completely describes a non- M

i}: divisible function in sufficient detail to allow ;
0

implementing code to be produced and tested independently

of other units
|

Wh | by !
T
o L-MODULE - the lowest physical entity specified in the &-
b\ r
B>, detailed design which may be assembled or compiled y
o alone

Ny | A
Q“ I Y
Ny L . . 4
{ —INSTRUCTION - a single line of code which may o
b N correspond to a single action of the computer :;

or may be automatically translated into a

series of single actions of the computer

\
- OPERATION - the action to be performed by by

the computer

s

.\‘-.. . .

O ‘~- OPERANDS - the symbolic or absolute y

:i} addresses of the computer memory where the >3

data to be processed reside.

Figure A-1. Software Decomposition Process and Terminology

>
LSRN =
\ﬂ_\ Y
A Y
< '
"4 A-3 et
»r e
¢ _* \]
R Py

o

~"‘- . {-‘., . f.'d"-’_f'\"(_-(P . ~r..«.'7“ (..q,w'- 'L SN | \.‘g -(~1 LR

osasanl RN, '*'ff,_z:-f«{:'}.{d-:Z'-“.-f RO -}*"- LT ?\'t'i“* : "'“\ﬁ k \”'{‘ SR
L -"&-f' u) v'-, B RO 7 AR S R ; e f' NN AR
{ Ton " oL J". Tadl. o n l‘n -'o‘ -‘0 " }

e <
Y .
A5 4.9
- K
N

) K

o .
. 3
o R%
. 2.0 METHODOLOGY {{

’n . '_ﬂ

The analyst must begin his reliability prediction with a relatively

g@' complete description of the overall software functional requirements and ;T
K the manner in which these requirements are allocated to the various sub- '
‘*§ units that make up the software system. Such a functional decomposition is ﬁt
N required for the software development team as well as the reliability g
it engineer. Typically, a software project manager will segment the overall T
O) job into subtasks which can be individually assigned, tracked, tested and
. eventually integrated back into the overall software system. It is con- i
;{;~ sidered good engineering practice to perform this segmentation functionally. b-
Y That is, top-down, structured design approaches provide both the mechanism {
) and the motivation for the accomplishment of a functional decomposition o
i very early in the design effort. The reliability engineer should obtain &3
il . . . oy
this top-level breakout as soon as it becomes available.
J':' d .:-
Eal S
S 7_:
::':j -\
a4 "
< :
P -
W % e
L
i
e o)
e
ooy 5
- r
" ...
i :
» 9
LMD)l (
£w .
S
e
\._' ;
e
o
5N ‘
PTA .
Skl
[} > % N
s -,
i) “
."’Q -
:*\ -3
W -
(A o
S0 ")
-‘..q' -
o s
e X
ny «
o A-b4 .
:*::-.
1, :

-
=

e

| T

3.0 USE OF THE FUNCTIONAL DECOMPOSITION

Properly prepared design documentation should include identification
of all components (modules), their functional requirements, their inputs
and outputs, performance requirements, testing plans, development schedule
and their interface requirement. When this information is available, each
module can be evaluated with respect to its contribution to the overall
reliability prediction. The functional flow diagram, described in Appendix
B, and the component reliability worksheets can be prepared.

LRI
P o O
)

v

5
™

\'\.'ﬂ.'-‘_“.\
x’h\\.&“* SRS
f\(‘

| vl‘ %
"'\' AR

"h -

A S ('-' a:':'. -'I"_-r“v'"
_\E i‘ o NITI

»

iy

My
v "ttt .N\u A

i

-

L7

.1\- ~< ., -wl-

u.

APPENDIX B

FUNCTIONAL FLOW DIAGRAM

t..u‘.k.-ll

L, o, -\- e

i RPN

-.

NG

p.~.-

S alalalal

Ay
ey
52

R

SORr R

4. -
()
-

> L

"‘""",.M

..
et — "zt

.. s~ s
T alyie e

o ot

‘l ‘,-f'

. .“l
T

2 ,,i‘. R

1.0 INTRODUCTION

The functional tlow diagram is an integral partL of the software reli-
ability prediction methodology. Although the particular form of the
diagram is insignificant, the data it contains is critical.

The most commonly used tool today 1s the flowchart. Both of the
example problems included in this report (Appendices G and H) use flow-
charts to depict the functional flow of control within a software system.

Another method commonly used is the Visual Control Logic Representa-
tion (VCLR) diagram. These diagrams have the added feature of directly
supporting structured programming. Each symbol used is completely self-
contained and has a single entry and a single exit. The VCLR is an equally
sufficient tool for use in identifying the data required for the prediction
methodology. Paths are a little less obvious and determining path prob-
abilities may be-a bit more difficult tham when working with flowcharts,
but the increase in structuredness should be worth the tradeoff.

It is very likely that diagrams as such will be used less and less
frequently as Program Design Languages (PDLs) become more widely used.
PDLs are languages used to describe the design. They may or may not
produce executable code. Their primary purpose is to specify and create
the logic of the computer program. They have the features of being pre-
cisely definable and are usually accompanied by a variety of automatic
design checking tools (consistency, continuity, etc.). Ada can, and
probably will, be used as a PDL. As its usage spreads, we may enter a
programming environment where the software design as well as the code is
expressed in machine readable form compiled and checked. This could
greatly enhance the application of the software reliability prediction
methodology. Actual frequency counts of logic segments can be produced by
the PDL compirler. That 1is, the actual path probabilities could be
automatically and contlnuously monitored during the design phase.
Automatic computation of software reliability would become feasible.

Figure B-l1 illustrates equivalent logic representations using a
flowchart, a VCLR, and a PDL, respectively.

~ . LI .
SRERERRED

\ 'n*- ‘w‘\ i‘-"’”'-

&

ARty

-

TRUE FALSE

AT

MODAULE MOI;ULE FLOW CHART

L X R X - -
P ? <%v o »

CONDITION
TRUE FALSE VCLR

MODULE MODULE
A B

A

X

s *n

]

~ o

.
W

IF CONDITION THEN
. MODULE A
e . LSE foL
N MODULE B
. ENDIF
)
.I
3 Figure B-1. Equivalent Logic Representations
s

v
LY T SNy N

[

B-3

-
4 & 3 £ X 8

s 232:&2'&11;'(‘.3:‘2;:':?:,:m A A A P
o0 Gt et o v- e
e\)t..' .\t ‘ - . .8 \o'l‘n Dg .Q.In ‘ R- " ‘

O3

-
-
[

X X

b .,'
LI P
U

Y l“v' .
.
- -‘..l

Aich

SINIINDEN:
7! .
ok

Y

-
et ata
[l A A A

AR
'

£

oo

v‘l 'l.

b
g A

2.0 USE OF FUNCTIONAL FLOW DIAGRAMS

The reliability engineer requires cetailed information about the logi-
cal relationships between individual components of Lhe software system.
Regardless of the format of the diagrams, he should be able to follow the
flow from one component to the next through the program. He should like-
wise be able to identify mission threads through the program. That is, if
the software is required to perform more than one mission, the conditions
which define the mission, should be self-evident within the flow diagram.
Similarly, a single mission application may be required to progress Lhrough
several modes of phases (e.g., boost, burnout, ballistic, final). The
reliability engineer should be able to identity the criteria and logic
1nvolved based on the information contained in the flow diagram,

A thorough and accurately prepared functional flow diagram will
provide the analyst with the information required to accomplish the next
step of the analysis (Thread Analysis).

P . « -
e e Tr ey e AT AT R
PR B fxa s

¢
2

e
e Taa s e

~

I |

" e
A_A_)

- .
-L‘? .

A 3

APPENDIX C

MISSION THREAD ANALYSIS

4
" .
e
- .
.
T
7
]
v’“
s
- "
“
.
l-.'
N
.
-
t ...
1
S .\:.
.- Se
o
o~
L
o
s
S
[l

St

M N
'\:w\'f-"

. “ TR “-
‘hn"‘ "‘-“‘-“ B .
o ~

» ; pr gy AR Bl 4l ol Lol it B-i B as i Ak e vl e aA DAl aln-snth <nkic b Ao gis-ass W T R T YT T

a Ay

.,‘:;«

4 1.0 INTRODUCTION
i
A clear understanding of the mission requirements of a computer pro-
iy gram is essential to the successful application of the reliability predic-
. tion methodology. Software failure mechanisms are not the same as those
o which influence hardware reliability. Whereas hardware is affected by
& environmental and stress conditions, software is not, at least not in the
' same sense. The environment in which software operates consists only of
\ the internal state of its storage and registers and the external influences
P it sees via data coming into or leaving its storage. Software is stressed
s when accumulated 1internal and external effects cause it to execute a logic
‘o path that has never been traversed before or when it follows a previously
R used path with an internal state which has never occurred on that path
'ﬂ before. A computer program which continuously repeats the same logic paths
with the same data will either fail on the first pass or will never fail.
g Unfortunately, even a simple program has an extremely large (possible
W infinite) number of logical paths through it. Equally awesome is the size
?: ot the 1aput domain even when only a tew 16-bit variables are required.
o For a given path and a given state, the reliability is, 1n fact,
PO determinlistic; 1.e., 1t will either work or it won't. However, historical
software performance data 1invariably shows that software failures occur
f: probabilistically. The only explanation possible 1s that the software
e experlences state changes probabilistically. Exhaustive testing to check
. every possible state of every possible logic path is highly impractical and
. typically impossible. The reliability prediction methodology described in
this report relies on a statistical technique to account for all possible
ag paths by use of mission scenarios which are defined by path probabilities
. at every decision point in the software. These probabilities are assigned
o based on the functional flow diagram (Appendix B) and the construction of a
- mission profile based on software mission requirements.
¥
N
nd
-"
\l
.S
\i
~
&
)
)
) :2.
l"»
8
Y
-
e c-2
N
| L]
o

14
A4

[
v 5
P R

2
'

- -.. v ." -
I T T S e S
S A e e A

V” g hulalialo A A S A th A Ate fie s gbe fle Siin i fe Ak "l Wl Ul dng Saf Sul ddl Sah Faf St Sl Shd el Golr” fhdr Shad S’ At i a i A A 0 it B Al o) i @A il aiE’ A i ekl i Al A bl v e

2.0 MISSION THREAD ANALYSIS

Branch points within the flow of a computer program must be expressed
in machine-understandable form. For the decision to be properly imple-~
mented, it is essential that the programmer understand the exact conditions
under which the branch will occur. Appendix H describes the process used
in determining what path probabilities to assign to various branches based
wn an engineering description of the software design. There is no set
formula for how to assign these probabilities, so the analyst must
thoroughly understand the mission requirements and apply that knowledge in
making sound estimates. In one case, the values might be precisely
determined through mathematical interpretation of the stated requirement
such as the Assault Breaker example in Appendix H. In another case, they
may involve engilneering judgements. The example depicted 1n Appendix G
includes both. 1In one case, the branch criteria was based on a required
time period for preventative maintenance and the path probabilities could
be directly computed. In another case, the path probability assigned to
leave the search mode was based on an estimate that the system would spend
90 percent of its time in the search mode.

The best recommendation possible at this point is to suggest that
several analyses be performed using different path probabilities at those
branches where there is ambiguity. By varying the values, one at a time,
the analyst can determine the sensitivity of the reliability prediction to
the value in question.

Fodduiamd
st .

v

. L }.

T e e T e T A e Te

1.0 INDIVIDUAL COMPONENT CHARACTERISTICS

This appendix presents the lists of characteristics which were identi-
fied during the study as having a significant 1influence on software reli-
ability. Tables D-1 through D-3, respectively, list:

o Inherent Characteristics of the software PRODUCT which influence
its error proneness

o Error Avoidance Charactevistics of the PROCESS used to develop the
software

o Error Detection Characteristics of the PROCESS used to develop the
software.

The lists are ordered in the same sequence that they appear in the
worksheets (Appendix I) so that the analyst can refer to the definitions
while determining which characteristics best describe the software and
development process for which a reliability prediction is being made.

Aoty

,
z

A, Ity
>

artm’

|

v e T .
B
e el

)
o

A

..
g7k

[
|
~
.,
=

3
r

R
\u
s
i
.“
I8 .
e TABLE D-1 Inherent Characteristics. .
> .
g OPERATIONAL APPLICATION TYPE - This characteristic is used to describe the
3 predominant use of a software component. For example, if the purpose
4 of the module is to issue commands to hardware components, we would say
)-: the module is of the 'predominantly controlled type”. even though it
' includes computational commands.
y CONTKOL - The action of initlating, sequencing, Lerminatlng or otherwlse
:g; influencing the operation of system components external to the software. z%
Uy J
:"n REAL-TIME - The processing of information or data in a manner sufficiencly ;f
[rapid that the results of the processing are available in time to o
A0 influence the process being monitored or controlled. ‘
o INTERACTIVE -~ A method of conversational input/output wherein the software
ii* produces an output which invokes a responsive input or receives an input
‘{: which requires a responsive output.
L
xi{ COMPUTATIONAL - The process wherein internally available data is combined,
) rearranged and/or otherwise manipulated to alter its state. For example
! a module whose purpose is to convert measurements from one dimension to
"o another should be regarded as being computational.
L
Au} MISSION VARIABILITY - In most large scale software applicatioms, a variety
. of missions or modes of operation are supported. For example, software
requirements for embedded software in a missile system may involve
. distinct modes of operation such as pre-flight, boost and ballistic
}§ activities. Some modules will perform the same activities regardless of 1:‘
- the mission type, while others will have distinctly different character- 50
o istics depending on the mission mode. MANY and SEVERAL operational {:i
-, missions are relative terms that may be interpreted at the discretion of i
i) the reader. :
;;: FUNCTIONAL COMPLEXITY - 1n order to meet its lntended purpose, a module
- may be required to perform more than one specific task. These entries
;{j accommudate the tact that some functions are relatively easy to design
:4 and code whereas others can require extensive and highly complex logic.
‘g SYSTEM INTERACTION - This category is a refinement of earlier categories.
Interface requirements are as previously defined. EXTENSIVE and .
MINIMAL are relative terms that may be interpreted by the analyst. o
INPUT DOMAIN VARIABILITY - This category is a refinement of earlier cate-
gories. Here, the interest is not in the quantity of inputs required,
- but rather the domain from which it comes. For example, a function
:n: which requires yes or no answers to many questions would have a NARROW -
b 2 RANGE of values (yes or no). On the other hand, a single input of an -
;ﬁ' angle measurement might have a domain of ~180.0000 to +180.0000 degrees. -
{ :» This one would be considered to have a WIDE RANGE of inputs. :
=

RANOAE

f
. _4
o
|
w
Yoy

.'s\{)“\('r'h"‘\‘\-){-_-,,q_ ORI T I e R TP ~
% " .r-r P A
-.u\, i J,\. ,-. -s._., _\.h. ',.,\).,f,ﬁr,
20§

A
-.,. M . ,«,\1.“
". ﬁ; "_‘" "‘J\VP-" ".y '('\.1‘.’

f‘ o .\"'o .' '-h‘ '-"'- " T Ad "

4"

TABLE D-1. Inherent Characteristics (Cont).

ERROR-PRONE/ERROR-FREE - These adjectives are used to distinguish the
effects on module reliability caused by the SOURCE of data inputs. A
device which contains self-checking features to ensure that its inputs
to the computer are correct would be considered error-free. Oun the
other hand, other input devices, such as human operators, may be

considered to be error—prone.

e
SN 4

[}

v

‘ -
hJ

-

)

-

» & s
LY
»
-y e D

-
-

x

S St

7
A

.
s

=3

i

TABLE D-2. Error Avoidance Characteristics.

Pt

) QUALITY ASSURANCE ORGANIZATION - A group responsible for the planned and
. systematic review of the software development process and its products "
: to provide adequate confidence that the item or product conforms to
X established technical requirements.

TEST ORGANIZATION - A group responsible for preparing test plans and
procedures, executing the test procedures, and analyzing the test
results in order to verify that the system performed its intended)

b, functions. This group is also responsible for documenting problems g

v detected during testing and verifying by retest that corrections to ‘.

the software work properly. .

INDEPENDENT VERIFICATION AND VALIDATION (IV&V) - Verification and
validation of a software product performed by an organization that 1is

' both technically and managerially separate from the organization

responsible for developing the product.

SOFTWARE SUPPORT LIBRARY ~ A scftware library containing computer
readable and human readable information relevant to a software
development effort.

CONFIGURATION CONTROL BOARD - The authority responsibie for evaluating
and approving or disapproving proposed engineering changes, and
N ensuring implementation of the approved changes.

SOFTWARE DEVELOPMENT PLAN - This document presents the comprehensive plan
for the project's software development activities by describing the
software development organization, the software design and testing
approach, the programs and documentation that will be produced, A

[software milestones and schedules, and the allocation of development ’

y resources.

SYSTEM REQUIREMENTS SPECIFICATION - This document states the technical
“ and mission requirements for a system as an entity, allocates

- requirements to functional areas, and defines the interfaces between
or among the functional areas.

~ s
r(‘.

[t o

£ INTERFACE DESIGN SPECIFICATION - This is an optional document which is

) required whenever the system contains two or more computers that must
communicate with each other. It provides a detailed logical
description of all data units, messages, control signals and
communication conventions between Lthe digital processors.

SOFTWARE REQUIREMENTS SPECIFICATION - This document establishes the
requirements for the performance, design, test and qualification of
the computer program.

‘ v} h\‘ \‘C-.'\ .&'4 .{‘\ W R M "\-L'.~ .
* *& ~§~' J R\ \‘d~u*\ﬁ-*.~.¢‘:.’f
- o Y et AT Nt Ao o
} oy R

Al

TABLE D-2. Error Avoidance Characteristics (Cont).

SOFTWARE FUNCTIONAL DESIGN SPECIFICATION - This document establishes the
functional design of the software at the computer program level. It
provides sufficient design information to accomplish the goals of the
Preliminary Design Review.

SOFTWARE DETAILED DESIGN SPECIFICATION - This document provides complete
programming design sufficiently detailed for a programmer to code from
with minimal additional direction.

REQUIREMENTS TRACEABILITY MATRIX - A set of tables which provides trace-
ability of software requirements from the system specification to Lhe
individual item requirements specifications, to the design specifica-
tion which implements the requirements, and to the software plans and
procedures that verify that requirements have been fully implemented.

STRUCiURED ANALYSIS TOOLS - These define a systematic method of using
function networks and other tools to develop an analysis-phase model
of a system. Typical tools include Data Flow Diagrams, Data
Dictionaries and structured English.

PROGRAM SPECIFICATION LANGUAGE (PSL) - A language used to specify the
requirements, design, behavior, or other characteristics of a system
or system component.

PROGRAM DESIGN LANGUAGE (PDL) - A language with special constructs and,
sometimes, verification protocols used to develop, analyze, and docu-
ment a design.

HIGH ORDER LANGUAGE (HOL) - A programming language which provides
compression of computer instructions such that one program statement
represent s many machine language instructions. It 1s non-problem
specific and 1s used by programmers to communicate with the computer.

HIERARCHICAL DESIGN - A design which consists ot multiple levels of
decomposition, general to specific. It 1s a structured approach with
the additional restriction that program control 1s accomplished
hierarchically. That is, program modules may only invoke other
modules which are subordinate to them.

TOP-DOWN DESIGN - An ordering to the sequence of decisions which are made
in the decomposition of a software system, by beginning with a simple
description of the entire process (top level). Through a succession
of refinements of what has been defined at each level, lower levels
are specified.

STRUCTURED DESIGN - A disciplined approach to software design which
adheres to a specified set of rules based on principles such as
top-down design, modularization, stepwise refinement, etc.

e

rtmtn a e

-

S -,y te oy <Y

i

TABLE D-2. Error Avoidance Characteristics (Cont).

SINGLE FUNCTION MODULARIZATION - An organization of the functions of the
computer program into a set of discrete program modules each of which
i1s designed to perform a single function.

STRUCTURED CODE - A code that has been generated with a limited number of
well-defined control structures using stepwise refinement.

AUTOMATIC MEASUREMENT TOOLS - This category includes all computer pro-
grams which evaluate other computer programs. They may be used to
verify compliance with coding standards, to measure progress, or to
provide a measure of complexity. They may be applied to any or all
phases of the development cycle.

AUTOMATIC TEST TOOLS - This category includes all computer programs that
automatically devise and/or execute tests on other computer programs
by analysis of the path logic and variable domains of the software
being test d and construction of test data sets which will exercise
all logical paths under all or extreme input conditions.

NS NN

NPT

e e e

)
199
[\
"
A%
"
"

r

e

o -
LSRRI}
AP ~

n
*

A,

D-7

®
A es

---_
k]
o ol
R
°
.
.
.
'.‘
r
",
g'J
]

A

.
.
T
¢

P
Y
¥
Fgn
aF
‘
.

4.5
.
.
s
s
s
.
s

LAAS

hoo s,

D |
.

(R}
FAFIRN

(AR
-

. 7.

IR

St

T Yy

Lr e e e e
[R
PR T AR)

S5, S 0,
. -

oo o

i g

o

P

\'v't‘l"-“-

o
2

[Iy

"'
¢

= fa g
. ’
e

\:\
u
2N
) . . .
ﬁﬂﬁﬁ TABLE D-3. Error Detection Characteristics.
1950)
LR, . .
;S ‘ FREQUENT/INFREQUENT - These are relative terms that may be interpreted by
the reader. In general, however, it is preferred that "frequent" be
;Iﬁx used to describe activities that occur on a regular, scheduled basis
»:)}: (e.g., weekly). "Infrequeant" carries the connotation that the
OO activity is less rigidly planned and accomplished (e.g., whenever a
i problem is suspected).
f_q WALKTHROUGH - A review process in which an analyst, designer or program- s
'}~¢: mer leads one or more peers through a segment of the software product -4
!¢‘; which he or she has developed. -
e 2
flﬁ PROGRESS REVIEW - For purposes of this survey, a progress review 1is a 5
' periodic report given to an individual's supervisor tu provide an
, assessment of the state of completion of a software product. This 1is
K o in contrast to a walkthrough which is conducted among peers and 1is
cxgﬂ primarily technical in nature.
o0
AN . . .
Sy QUALITY AUDIT - For purposes of this survey, a quality audit is an
AD announced or unannounced inspection of a software product or process.
..' For example, an audit may consist of an inspection of a portion of a
HANE programmer's code to verify compliance with programming standards.
& *
103y
“%(% SOFTWARE PROBLEM REPORT - A report of a program deficiency identified
] during software qualification, test, system integration and test, or
Y system operation, which appears to be software related.
‘
AN SPECIFICATION CHANGE NOTICE - A formal notification of a change in the
e specification.
fi}j ENGINEERING CHANGE NOTICE - A document used to process changes to
s baseline documents and which includes both notice of an engineering
change to a configuration item and the supporting documentation by
o which the change is described.
h“::.'~;
el SOFTWARE REQUIREMENTS REVIEW (SRR) - A review to achieve formal agreement
Biu: between the customer and the developer that the suvftware requirements
e specifications are complete and accurate.
f N PRELIMINARY DESIGN REVIEW (PDR) - A formal technical review of the basic
o??q design approach. It is held after the completion of preliminary
f{%?b design efforts but prior tu the start of detailed design. See also
f:?fW SYSTEM DESIGN REVIEW and CRITICAL DESIGN REVIEW.
p '\-'('\.1
CRITICAL DESIGN REVIEW (CDR) - A formal technical design review conducted
o to ensure 'hat the detailed design correctly and completely satisfies e
o the requirements. It is conducted after completion of the detailed S
T design but prior to coding. It establishes the design baseline. :
o 3
LY '3 ‘314
oo —
-:*:\.:' :W
o oA
-‘.‘-'. - \:‘
e _ y
RO D-8 3

J ol =i ot g Py gl . - Nap . D R Y R LWy Py Ty T gy Uy T T

N)
e
4
ﬁ
1Y
’\\'
’ TABLE D-3. Error Detection Characteristics (Cont).
-
iﬁ TEST READINESS REVIEW (TRR) - A review conducted prior to each test to
e ensure adequacy of the documentation and to establish a configuration
ot baseline.
i)
I’) FUNCTIONAL CONFIGURATION AUDIT (FCA) - Audit to verify that the actual
K- performance of the configuration items complies with the B-5 develop-
Y ment specifications.
. ﬂ.
':.\.'
"

PHYSICAL CONFIGURATION AUDIT (PCA) - A formal examination of the as-built
version of a configuration item against its technical documentation to
ensure the adequacy, completeness, and accuracy of the technical

A

‘g}, design documeantation.
AN
:2$‘ UNIT LEVEL TESTING - Testing to verify program unit logic, computational
- adequacy, data handling capability, interfaces and design extremes,
y’; and to execute and verify every branch.
TP
S¢Xy PRELIMINARY QUALIFICATION TESTING (PQT) - An incremental testing process
A which provides visibility and control of the computer program develop-
ﬁ:% ment during the time period between the Critical Design Review (CDR)
}:1 and Formal Qualification Testing {(FQT); conducted for those functions
B critical to the CPECI.
Ppha FORMAL QUALIFICATION TESTING (FQT) - Testing conducted prior to Functional
';{ Configuration Audit to demonstrate CPCI compliance with all applicable
Oy software specifications.
AN
ol
-ﬁ' SOFTWARE INTEGRATION TESTING - Tests of the overall computer program used
:) to verify proper module interfaces with respect to sequencing, timing,
pepy ™ and data compatibility.
VRN
URty .
[SYSTEM INTEGRATION TESTING - The process of testing an integrated hard-
‘JQ? ware and software system to verify that the system meets its specified
T requirements.
: .
b8 OPERATIONAL FIELD TESTING - Test performed by operational personnel in
::j: the operational environment. These can be the same tests performed
gty earlier during FQT.
_:_j..
SN
.-\‘C
Py
Ay
"
D
z:"\i‘
SN
e s
:'_ D-9
DON
F T,
S ST

v e vt BRI -
LSS I R S S U PN SR -
. IR I <

IS e,
PR PR O < - . v

A T A A N RN AW SR SRR ot
14‘!414 VR, T, 7, W, P LS PR VR PR PP R P VPR L) FEPTAPS PR ATV, T AR S AL i A A doa o N Ll T

Eprs
.y
G

L4
A

W\ =
[})
L™]
&
. .
PN
\ o

5)
APPENDIX E
"‘*::. INDIVIDUAL COMPONENT RELIABILITIES '_‘.:'_"
0
5 3
! -
L'l
R N
= v
.":'s "
- - --.' 4
'.\ ‘_\‘:
W)
\{:‘1. 'j. :"
I o
) P
1 RS
oY R
¥ ".'.' B
A
. ey
r ‘ N ;{
) b
= I
- N
e P
,L‘ : C'“)
3
‘ -7. ‘- L]
‘ l." . -‘N
o < - »
GRS b
F_IJ -“"‘-
S E-1 <k
5 9

‘ ”,
TARRIRE ALY S A
e ':’:}\‘?"W Cartrte ,{\Q: (e .»Q'%; o
.-, .'f“'" e e R SO oSl

. i AW J) ‘
DASOOMEONNS S'}l.‘t' 218 N, !’ NI o‘- O .5

C . it e e T ek aale’ POTURY e e~ v ank- ? C wrrgTT oY

)

.

—a,
Catrac
4 et s

AR, <«
» ot .
‘l-.\: b
'-'.\‘ .,
OLn 1.0 INTRODUCTION =N
! “u
S Just as hardware components can be classified 1nto component categories
QN such as rgsi§tors, capacitors, and diodes, software can be categorized 1into ‘T
A characteristic groups. In the case of software, however, the distinction by
;tth between groups 1s based on logical composition rather than physical makeup. 2
PN A direct relationship between the complexity of a computer program and 1its .j
e reliability is intuitively expected. Likewise, it is intuitive that the "
) complexity of the software is related to its intended application (the pro-
L grammatic complexity of the design is considered later). In other words, v

even before it is designed or implemented, real time software is expected
to be more error prone than batch software where timing i1s not a critical
consideration. Similarly, historical evidence shows that programs with a
large amount of interface requirements experience higher failure rates than
those that contain minimal interfaces.

ANERTN

=
-

To determine individual component reliability (probability of success
on a single execution), the analyst must evaluate the characteristics of the -
component itself as well as the characteristics of the process which will .
be used to develop it. The methodology described in the appendix is derived i
and explained in Section 5.0 of Volume I. The worksheets included in (
Appendix I of this volume were created to simplify the application of the
formulas. As was explained earlier, the numeric values were statistically -t
derived from survey data collected during the study. :

ks

o
3

34
-
"y .,
\ "-:.‘.' 3
Al :‘h':.- \'.
o q-
u_:h-_v ,:
1y .
‘ =
J > &
-
0‘,.1: R
N :
..4' .
; 74’.1-4; 7
[3§
o
) ‘,’-
e ¢
0
o
NI :
o oy ‘
1) ¥ *}: v
o" ‘J \\'
’\ \J v
o -

x E-2

1 -
¥ uj N
‘ ¥

?%ﬁ .
e
,.;:é
X S
3;, > 2.0 METHODOLOGY ;_-L-'_
O, , -
- 2.1 Overview
H .
‘{:: The methodology for predicting individual component reliability i}‘
K- involves the identification or calculation of its inherent reliability and <)
‘ij the application of an enhancement factor which is calculated as a function o
:'b, of the development process characteristics discussed in Appendix D. .
v Specifically:
_..., ;f-'__
o R, =R +E(CL-R) (1) ny
)-.\‘:c :':-
ot and, L
sl
A

%9 T awm @)
fo T
j{ where: R. is the expected component reliability =
L 3
Y R; is the inherent reliability of either the process or the -
[] cemponent '
. 1
ﬁnj E 1is the enhancement factor achieved by the application of error 2y
fazi avoidance and detection techniques e
!i”: A is the single factor which describes the effect of applying one N

or more error avoidance techniques during development

“:‘ L‘-\
:2\ D is the single factor which describes the effect of applying one E?
:.71 or more error detection techniques during development. bf

3 2.2 Expected Component Reliability o
\gl The expected reliability of a software component is a fuaction of the Ly
-{: inherent characteristics of the component and the characteristics of the }X
- development process used to produce it. Unfortunately, there is insufficient W
N historical data available to isolate, with any degree of confidence, the }l
" casual relationship between a specific characteristic or development tech- IS
"!; nique and the resulting effect on component reliability. The term 'reliabil- a
L ity" is used here to connotate the probability that the software component)
(s will perform its intended functions correctly the next time it is executed. o
1 That is, component reliability is defined as the probability of success in :j:
e a single trial. If it were possible to extensively exercise the component 523
}b in a controlled experiment, its reliability could be approximated by the o
’ ratio of its successful executions to its total executions. In fact, if at -
A the end of the development cycle, eéxtensive run data is available for a ~=
- particular software component, or that component has other dependable Q}.
S:}: failure data, we would bypass all of the following analyses and simply use hi
v the known, or measured component reliability. However, prior to its QL
- development, we predict component reliability by estimating its inherent b%

reliability and modifying that estimate by an enhancement factor related :
to the manner in which it will be developed:

lde!ls

.\

o N
=, E-3
W3 o
’. -

»
KA
"

M- A s san ach ol

o
SRR

M oo

5

R =R, +E(1 -R.) (3)
c i i

¥y s 8
P

where: R. 1is the component reliability (probability of success)

R; 1is the inherent reliability of either the process or the
component {(described in Section 2.3)

i; E is the enhancement factor achieved by the application of error
\ avoidance and detection techniques (derived in Section 2.4),

2.3 1Inherent Component Reliability - Rj

! There are several approaches to determine inherent software component
' reliability, each of which has both advantages and disadvantages. Any
measure which presents a ratio of successful implementations to total
implementations may be used in the prediction methodology. Some of the
more obvious measures are discussed below:

-

Tale e v,

1 Assume that R; is equal to zero. This causes equation (3) to
reduce simply to the enhancement factor. At first glance, this
approach appears to be a gross simplification. It essentially
says that unless an effort is made to avoid and/or detect errors,
the software component will not work. We feel that this 1s the
most theoretically sound approach. However, it assumes that the
developer has absolutely no knowledge of the product he is respon-
sible to develop. Even a casual knowledge of what he's supposed to
do can be considered an error avoidance technique. This assumption
carries with it the additional assumption that the checklist of
avoidance and detection techniques is exhaustive. It does, however,
define a lower bound on the reliability prediction when the devel-
opmental characteristics are known.

T]
LN .
PN]

(WP

LN

Assume that the inherent UNreliability is proportional to measured
fault densities of existing software which has similar characteris-
tics. This approach has the advantage of data availability. Al-
though there is a fairly wide range of measured values of faults

per line of code, there is sufficient historical data for an analyst
to make a sound engineering determination of the best figure to

use. Care must be taken, however, to distinguish how and when the
data used was collected. Many organizations do not begin counting
faults until the software is tested in the overall system while
others begin recording failure data as soon as individual components
have completed unit test. The prediction methodology assumes that
R, includes consideration of all errors made, not just the ones
recorded subsequent to integration testing. This method should
produce an upper bound on the reliability prediction due to the

) fact that the actual number of faults in a software product cannot
be less than the number recorded.

PYENIY
" k7.

PR
i

4

[TN

PONY S Y e e

A

EA g TS
LA ¥ A

/]

x

100

Py

= Ryray - o a Al S i 2o 20l 4 Bl b B uh A B S Br gl uA L AL e el ok Ll Aed aridh el i il R

R
A
sl
e
*.::-.:
.‘_.\.
:fQ 3 Assume that the inherent UNreliability is proportional to a fault
:;: density which has been interpolated from the range of historically
N recorded fault densities. The interpolation could be based on the
’ same characteristics already discussed in Table D-1. Although such
o a scheme has not yet been formulated, it is the opinion of the
Y author that one could be created and that it would provide the most
Eg: unbiased measure.
o
Jf 2.4 Enhancement Factor - E
)
,1?£ Figure E-1 1llustrates the relationship between 1nherent reliability,
iﬂ) avoidance etfectiveness and detection effectiveness. The figure introduces
e some terminology not previously described:
I3,
.ch Rj Inherent reliability.
o N Total possible variations implemented {(all possible combinations
N of functions to be performed in all possible input domains).
:Q"‘ NG Total variations inherently implemented correctly. These are
S8 the variations that would have been properly implemented without
o process enhancement.
O NB Total variations inherently implemented incorrectly. These are
b candidates to be avoided or detected.
"o I; Number of variations being worked on during the i'th itera-
tion. These include the original errors to be eliminated plus
:\J‘ reworks of errors discovered on the previous iteration.
’}i: NGG Number of variations which 'pass thru" the avoidance/detection
}}} filters because they are already correctly implemented.

NBG; Number of previously incorrect implementations which were
successfully avoided on the current iteration.

Number of previously incorrect implementations which were
neither avoided nor detected on the current iteration,

NBD, Number of previously incorrect implementations which were
successfully detected and returned for rework.

)
[
’

D)
4.,

A,D These are the error avoidance and detection factors.

e
. .l "' "
2 lel

The process depicted represents a typical software development opera-
tion. As a result of the inherent characteristics of the software to be
developed, errors will be made. The development team will attempt to avoid

r

. making those errors by the application of software engineering techniques. ?i
- Recognizing that they will probably not avoid all errors, tests and other Tl
T detection techniques are implemented to locate and rework the faults. A
- Avoided errors will exit the process as corrected implemented variations.)
ii} Detected errors will be reworked by the process until they either are -y
Sy, avoided or escape the detection mechanisms. Eventually, all N variations -

exit the process. Since the enhancement factor is an improvement factor,

it is defined as:

SW DEVELOPMENT PROCESS oW YERIFICATION PROCESS

w
T

-

A
Rc = RI + E(I-Rl) where, [5 e———
V- 0(1-A)

Figure E~1. Relationship of R(I), R(C), A and D

Oy

Py
ENEEs

30!

NN
[s xflxx y

o+ S

B
=¥,

»
.

e

e
NS
' v

OIS LA

4

x
Lol

A,
l“l

!
4
2,
0
U
b
i

E = NBG - Number of Corrected Bad Implementations (4)
NBG + NBB Total Number of Bad Implementations)

It can be shown (a detalled derivation is presented in Section 5.0 of Volume
I) that the quantitative terms N--, including the original number of varia-
tions N, cancel out leaving only the error avoidance and detection prob-
abilities. That is, the enhancement factor is simply a function of the

PROCESS characteristics:

= A
E =T (3)

where: A and D are the error avoidance and detection factors described

in Section 2.4.2.
2.4.1 Effects of Inherent Component Characteristics

Recognizing that error avoidance and detection techniques are not
equally effective against all error types, it is desirable to weigh the
enhancement factor in accordance with the expected distribution of error
types which are inherently expected to occur based on the characteristics
of the software component being developed. Table D-1 lists the character-
istics which were investigated during the study. The numeric data presented
in Appendix I (worksheet No. 1) represents the distribution of errors which
can be expected as a result of those characteristics.

If we define C(j) as the percentage of errors of type j to be expected
in the module being evaluated, it follows that:

1=N
c(j) = E 2(_%:.}_) (6)
1=]

where: c¢(j,1) 1s the percentage of errors of type j caused
by inherent characteristic i, (listed in Volume I1)

and N 1s the number of inherent characteristics applicable.

The enhancement factor is, therefore, more accurately defined as:

£ = c(jla(j) (7)
‘ 1-D(j) (1-A(3))

4
)=1

where: A(j) and D(j) are the error avoidance and detection factors as
determined with respect to error type j.

» .
- &

. R S0 St b R h oUW VL L R R W e TN W T T T e

'.1

e

P
i,

-
Ry

' e
b
2

Cgl
e '
N -
114
W o
A% :?‘
Li‘ :"
Wi 2.4.2 Error Avoid dD g F 3 W,
g E voldance an etection Factors Ly
. i
) As described earlier, software development characteristics can be -
B categorized in terms of their contributions to error avoidance or error -
! ES detection. Virtually any activity during the development life cycle can be ?:
o evaluated in terms of these two characteristics. The software reliability jy
o prediction methodology uses measures of error avoidance and error detection Yy
S effectiveness which are based on the planned technical and managerial tech- L
!) niques and methods used to develop the software under investigation. —

»
S

Ll _;-: .
S It is generally accepted that certain development techniques are good o~
oy and will make the software better. For example, 1t 1s generally agreed }}
IV that structured approaches are good and will have a positive influence on {§
Koy the quality and reliability of the product. Quantification of the effects LY
is typically attempted after the development is complete and the results
B are rarely applicable to new projects. While the approach described heretin Iy
:5; has a limitation due to the unavailability of detailed historical records, t:
j; the method is directly applicable to any software development venture. ?i
e .
- . . . S P
"’Q Error avoidance effectiveness is calculated as the probability of not -
introducing an error given the opportunity for making the error. Mathe-
5N matically, it is computed as unity minus the probability that a hypothetical s
nY error will not be avoided by any of the techniques employed. If we define L
- A(j) as the probability of avoiding errors of type j, it follows that: o
5 S
e i=N N
A A(3) =1.00 - ’l (1.00 - a(j,i)) (8) ~a
= ’ o
A% i=l =
N .-_:. \.:_-
e where: a(j,i) is the probability of error type j being avoided by -
:) the application of technique i, (listed in Volume II) .
[N
%‘ and N is the number of techniques employed. Y
5y N
I b
p?% Error detection effectiveness i1s similarly calculated as the prob- PR
fﬂﬁ ability that an existing error will be discovered and corrected. Again, 1t k;
‘J, is mathematically computed as unity minus the probability that a hypotheti-
FY - cal error will not be detected by any of the techaniques empluyed. If we -
;:§; define D(j) as the effectiveness of detecting errors of type j, it follows 'i;
: \::, that: ::
B -
y ‘.i’ i=N _::
O D(j) =1.00 - 7] (1.00 - d(j,i)) (9) Yy
A " w9
L". - “n
\ 1=1 Lk :
1]
}“i where: d(j,1) is the probability of error type j being detected o d
. P y ol : - : W
i’ by the application of technique i, (listed in Volume II)

and N is the number of techniques employed. 1T

-

-
AN
A K_) _K'l_ R

R,

E-8 Y

GRS

r"’.;aq.f"}.,

NI "-}, XN \3‘ -

o “i; e

AR

« ?,’ - - —— T
R e R 4 1 SN

A

P T

’{‘

-

YA

CatdY

3.0 USE OF THE METHODOLOGY

After the inherent and developmental characteristics of the individual __

software components have been identified (see Appendix D), the calculation :?ﬁ{_

of individual reliabilities is relatively simple. Appendix I of this C?:

report includes worksheets designed specifically for this purpose. The Yy

worksheets are self-contained and may be used directly without understand- '?1‘

ing of the derivation described above. The numeric values assigned to the pysh
factors listed were derived from the results of the survey performed as a g

part of this study. S

;":§}

o

Rt

-1+

T

‘}>". R

R

i !

{(.‘_ﬂ"’

oy

e

o

.!- -....- ‘x .- e rM-
\~ \» !- \\.\._ \-h-hn

¢

.:'0,4 o

)
3

>
=
—
-
-t
-
=1
e =]
o
.vl.A
a &
=z <
IS =
a. [
o [
< o
n
-3
3
2
>
o

SRR

I"' l' "'\‘I” \‘
)“-}.Nf\n-%.
ey,

-

P

IPRNETCNSFOTINIDS THrr Vs) COENTR TN RN, J SRS

g fas - UFTr ron R T O O D W VT Oy W W e O T —

- - ~ S
A0S

.
¥x$\ -‘t
15% >
Yol g

™ 1.0 INTRODUCTION ; ‘
L. B -

This Appendix describes and derives the technique nused by the reli-
ability prediction methodology. It assumes that the analyst has already ‘
identified the software components (modules) that make up the software
subsystem, that their individual reliabilities have been calculated, and

FITFT
e

E §

(5 that a mission thread analysis has produced inter-module path L.
QEl probabilities. The method described utilizes mathematical methods usually 2
‘H) associated with a Markov process including a matrix inversion technique. o
A P %
;Lj} The rationale for this approach is based on the recognition that soft- L
7§§f ware reliability is not only a function of the reliabilities of its collec- “
'f?* tive modules but also a function of the execution sequence(s) of those R
modules. The probability of a module failing is a conditional probability
that it will fail GIVEN that it was executed. This is essentially a duty
N cycling effect. =
i L Lo
Arhe . . . e ey v
’ﬂyf Hardware duty cycling effects are generally considered in reliability -4
B predictions at the highest level only. Individual components within a L
e circuit are all operational or they are all dormant. Since each component r
‘C’[is essential to the continuity of the circuit, duty cycling effects have no
AN meaning at this level and can be ignored. by
e -
Y . . -§
1; Duty cycling effects, however, are probably the most critical deter- B
o minant of software reliability. Software cannot fail unless it is being 4
4 utilized. Its non-operating reliability is one. A logic path does not -
Lt ' ' 2 g y gic p
(exist during a time period (albeit microseconds) when it is not being *
utilized. The functional flow of control through a computer program is, 1in "5
fact, its reliability block diagram. -
Ik
o ‘
Al o
LA L
A ~3
T &
o 3
™
.Y
ST 0
o A
.:1:-;-‘ X
\ * ‘h“ .1
-.':" '-\
e * "
o X
NS
., \.' I.
o '™,
N N
AR ™~
¥ {;f‘ g
K N
i :
< » F-2 l‘

i
e
.‘%
st
Dhs))
:3:- 2.0 MARKOV PROCESS
ol
: It is pussible to predict overall software subsystem reliability by
N combining the individual module reliabilities in accordance with their
%iy expected usage during the application or mission under analysis. This is
tf; accomplished by use of a Markov process as suggested by Cheung [1]. The
Sy approach is based on the fact that individual software components contri-
} - bute to the overall reliability when, and only when, they are executed.
:}} The flow of control between components of a software program can be
7 considered a Markov process if we assume that the component reliabilities
L are independent. Suppose a given software program has n components. It is

“ necessary to know the reliability of each component and the probability of
going from one component to another. The component reliabilities are in
the diagonal matrix R and the path probabilities are im the matrix P;

4 i.e.,

- - - pe -
'1-' R
i p 00 0 Pii Fi2 Fla
g
8 U R o . .. 0 . e
s 2 Par Faa Pan
: R = 0] 0 R . = . e
° 3 0 PP P F3n
,:..-_: . . o e e s
= ¢ o0 o0 ... R P P . . . P
~ n nl n2 nn
E.-! where R(1) 1s the reliability of component 1 and P(1j) is the probabiliLy
that control is passed from component L to component j.
-
_:% The matrix Q is the product of the matrices R and P. The ij'th
ﬂ: entry represents the joint probability that component i will execute
S correctly (R(i)) AND pass control to component j (P(ij)).
'.‘1 - T
R, *P R * . . . *
‘ 1P RPy R P n
‘l-“ * * . . . *
Ry*Po1 Ry™Pyy R Pon
& Q -
e
\A., * * *
bl Rn Pnl Rn Pn2 ’ ’) Rn Pnn
h L .
:{{ _ By considering each component to be a state and by defining two
o adlexongl states, C and F, for correct program termination and failed
{ ﬁ& termination of the program, respectively, a Markov chain can be constructed
* with n+2 states. The transition matrix, T. is formed by adding two rows
o and two columns to the matrix Q. The additional two rows and columns are
{ for the states C and F. The matrix T is defined as follows:
o<
N
o
o
‘}:
s

. 3

reRs
Y

1]

Aane

F-3

T aty

b Jad

kY
e A AL .
L ST SRR R R L SR AP
el ‘-L'_;s.:} e ;‘."-'\":-‘.::-.'_x'
‘.

W e T

O
) y 0 W1n ANy N
‘1‘1‘!"‘..:'1 '\‘.‘:\ lt\t! (W tl. Yy N

RsLR
A.in{ A

’ -
x
T T
i
b e

)
» 1
f» 5 ¥ a's

=
L

¥

N
L P L3 4
s

Ll Fy

L

dﬁ!&

e ‘. .‘ ‘. ’. "
RSN
RN S

r

a
LY

_ 1 2 n C F
* ; -
L [R*p RFR, o . L RpFRO L Rﬂ
* -
2 R2*P21 R2 P22 ... R2*P2n 0 1 R2
T =
n R *P R *P . . . R *P R 1-R
n nl n n2 n nn n n
C 0 0 0 1
F = 0 0 .., 0 0 1 |

The 1j'th entry of T is the probabilty ot going from state 1 to state
j in one step. The 1j'th entry of T*T 1is the probability of going from
state 1 to state j in two steps. The ij'th eatry ot T*T*T iLs the prob-
ability of going from i to j in three steps. The reliability of the
software i1s the probability of going from state | to state C in x steps or
less as x approaches infinity. Thus, to compute this reliability, we would
need to calculate

1=x
E Ti, as x approaches infinity.
i=1

There is a simpler way of computing the reliability of a program using
the matrix Q. Let

S=1+Q+Q2 +q3 +qt+

where I is the identify matrix.

Note that:
(I - Q) * (I +Q + Q2 + Q3 + Qa +) =1 +Q + Q2 + Q3 +
3
-q-Qf - -
=I,
and so,
1+o+ v+, . L=a-0™h
It follows that,
s = (1 -qQ7L.

Letting S(ln) be the entry in the first row and n'th column of S, the
reliability of the program for a single cycle, R(c), is given by

R(c) = S(1n) * R(n).

ok
"

.- . .0. 'l‘\i. "‘

N.; oS

&

.
e
)

i
".l .

2" " N
SN SLS

L A)

»

b ‘:'1._4‘
oot

R

Sl

. -1"8
»

14

%)

Several important points should be made here. First, siuce Lhe -
calculation of sottware reliability was cumputed based on operational path
probabilities, the prediction made 1s limited Lo the scenpario or mission
described by those probabiiities. Secondly, the value computed 1s cycle .
based. That is, it represeats the probability of successfully completing .
the software one time. Many operatiovnal missions require the repeated R
cycling of a computer program throughout a given mission time. Equally "]
important, software reliability must be expressed in a time-based reference v
if it is to be combined with hardware reliability to arrive at an overall R
mission reliability.

F-5

3.0 USE OF THE MARKOV PROCESS

The analyst must essentially accomplish the steps defined above.
Having already determined the individual module reliabilities (Appendix E)
and having already accomplished a path analysis (Appendix C), the matrices
R and P can be constructed. The R matrix is simply a diagonal matrix
containing the individual module reliabilities. That is R(nn) equals the
reliability of the n'th module. All other entries in the R matrix are set
to zero. The P matrix contains all the path probabilities. 1In the first
row the analyst must list the probabilities of module 1 passing control to
each of the modules (itself included). In the second row, the same is
listed with respect to control leaving module 2.

Multiply R*P. Since R is a diagonal matrix, this step can be done by
inspection simply by multiplying every entry of row i in P by R(ii).

The matrix product R*P is referred to as the Q matrix. The next step
is to substract Q from the identity (diagonal matrix of 1's) and then
compute the inverse of the I-Q matrix. Call it the S matrix. This is the
only step which is computationaly difficult. Matrix inversion is difficult
for all but the smallest problems. It is highly recommended that this step
of the methodology be computerized.

The overall software reliability can be easily calculated from the S
matrix. Since S(ln) is the probability of reaching module n, and since n
1s the last module, the product of S(ln) and R(n) is equal to the overall
software reliability.

ORI UCAREt IS
%**i i’ .‘
N‘
ath

e
e

Jf‘r‘r)‘lr}'. ¥

L R

LR SL R

> or v

> w4
r e A8

.....

hn (. - . - !
PRI |
SoV It Ay Wt S
=
<31
3]
w
>4
w
(4}
=
(&} -
x
= <
[=] =
=
<2l [=]
=3 -4
[N <
<<
=
(e}
-
[
Q
=
b=
]
[=)

W |

PR L

v

LA

- s \
SO oy
§ \'. ..'_
19y H
1 .
‘. . -

- gt
- o8
A -
A9 R
e 1.0 INTRODUCTION <o
e &-]
: To illustrate the application of the software portion of the combined .
T Hardware/Software System Reliabiity Prediction Methodology, a relatively e
- 3 straight forward example 1s presented. W

" .. S~

. ey
ol o
L ~r
5 -
[I
i
b, i

g hoa

\Ch e

'('-" A‘-“N
- 7
£
o 73
R "4\. 7 A
.} i‘n
an -

1) I8
2
by .
< g

-
o
)

Ll
Ty e

Y x -
W,
f-'s!

SR LN
A

L .
A N I T S
vy 9 9 A '~

-

ks
R A

g s W
s £ 3

.l-

R R R I

¥ ol
f‘ A h A

)
LI Y s

... g g)

L1y & 6

SN

SRE(

v -

2.0 THE PROBLEM DESCRIPTION

The application is a simple search and warning system which continually
scans an area of the atmosphere, evaluates returns, and 1ssues a warning
message when a detected object is found to be hostile. The hardware por-
tion of the system consists of devices which can be directed to scan an
area, perform an acquisition pattern or track a specific path as commanded
by the computer. The computer software is required to analyze returns,
1ssue move commands to the hardware and report hostile targets.

In the search mode the software is required Lo accept positional data
from the hardware, correlate the individual returns and perform preliminary
analysis of the potencial target. If no target meets a preset correlation
threshold or if none of the targets meet other threat conditions, the
hardware 1s directed to remain in the search mode. 1f a potential target
1s detected, the software must 1nitiate an acquisition mode.

In the acquisition mode, the software will be receiving returns from
the hardware 1n accordance with a pre-defined pattern. It must identify
those returns which correlate with the target being acquired and computer
trajectory data for the target. When the system is able to predict Lhe
next position of the target within a given error tolerance, the software
must issue a command to initiate track mode. If the system is unable to
acquire the target within a prescribed time, acquistion is aborted and the
operation is returned to the search mode.

In the track mode, the software issues pointing coordinates to the
hardware, evaluates the returns, updates its trajectory estimates and

evaluates the target's predicted launch and impact points. If the target
1s untrackable or if it is found to be non-hostile based on the trajectory
analysis, the system is directed to return to the search mode. If it 1is

found to be hostile and its predicted launch and impact points can be
computed within a pre-determined confidence range, a message is sent, track
is broken and the system 1s returned to the search mode.

The system is designed to be operational at least 95 percent of the
time. That 1s, it may be shut down for 72 minutes every day for pre-
ventative maintenance. When the operator issues a shutdown command, Lhe
software will perform s:lf-checking maintenance routines and tssu: the
necessary commands to shut down the entire system. During operation, the
software portion of the system must achleve a Y0 percent reliability.

G-3

..f../.".' ...

..
L4

* .r
WY,
o S i

AR A B,
L
[PV

3

L ACA e A acab b a o sb e e oL e BNt aat B Lid Bk s Maa ke) ey e ha T R I T W P I I W 7 R W r e T W T W T W T e v e g
BN o

L)
‘.
R

i

»
-

i
. PN
SN
PN
P et

-

! [

’

¢ e
i

.
-
» e
DA

w '
v
L S

o
A Ryt ' o
PN
e

LRSI

b

-4

yad

V ;VJ!

& 4

3.0 APPLYING THE METHODOLOGY
3.1 Preliminary Analysis

Based on the system requirements definition, a functional decomposi-
tion is accomplished, and it is determined that software design will
consist of five functionally independent modules: search, acquire, track,
report, and maintenance. The top level functional flow chart is shown in
Figure G-1. As can be seen from the flow diagram, each module has a single
entry point and one or more possible exits. The logical flow from one
module to the next is determined by various decision points within each of
the modules. The functional design of the modules as well as the entry and
exit decisions are extracted directly from the performance requirements
listed in the previous section.

Next, it 1s necessary to predict the individual reliability of each of
the functional modules. A context flow analysis reveals inherent charac-
teristics of the data and control flow within each wmodule. Inherent pro-
cessing analysis identifies those aspects of individual modules which can
be expected to affect its reliability. Coasiderations of 1its size, appli-
catlon category, language level, etc. can be compared with historical data
of similar applications. Likewise, the developmental characieristics
atfect the manner in which errors are either avoided or detected. The
worksheets presented in Appendix I of this volume are used to predict
individual module reliabilities. Figures G-2a through G-2d demonstrate the
calculation of the reliability for the track module. A separate worksheet
must be accomplished for each module in the system.

Next, a functional thread analysis is performed to determine the like-
lihood (probability) of each possible path being executed. This is accom-
plished by analysis of anticipated scenarios coupled with the functional
design of the software. In essence, the analyst must predict how often
each of the switching decisions will be made. For example, the require-
ments specified that the system would be shut down for 72 minutes per day
for preventative maintenance. Therefore, the probability of going from
the search mode to the self-check mode is equal to 0.05 (72 minutes in a
1440 minute day). Other probabilities, such as the percent of time that
acquisition mode will be entered must be determined by the same analytical
threat assessments that were used when it was determined that the system
was needed in the first place.

Finally, the module-to-module path probabilities and the module reli-
abilities are entered on the functional flow diagram (Figure G-3) for later
analysis. Note that in Figure G-3, the module names have been replaced by
module numbers to facilitate the mathematics that are performed in the next
section.

Armed with 1ndividual module reliabilities and path vxecution prob-
abilities, 1t 1s now possible to compute the conditional probabilities
that a module will operate successfully given that it was executed. It
should be obvious that there 1s essentially an unlimited number of

o -
-‘. possible paths, and consequently, an unlimited number of calculations to be ‘_:’
v made. Fortunately, the scenario can be described by a Markov process which .
b - duplicates the transitions from one state to the next. Furthermore, once oy
“:-.j the mathematical transition matrix has been established, it can be manip- :‘;,"
T ulated to evaluate the infinite sum of conditional probabilities via a S
- single matrix operation. The section that follows, utilizes the results of ‘:-:4,
N the path analysis and module reliability analysis to construct the Markov C;.I
\ transition matrix and determine the reliability of the overall software o
L component of the system. :.,-
’:::: 3.2 Mathematical Computations ::.-."._t
‘:-'f Based on the preliminary analyses of individual module reliabilities ,.-\‘
and the functional path analysis, we can summarize the problem using
¥ Y mathematical shorthand as follows: 5
- o e
: R; = 0.98 Reliability of module 1 i
‘o Ry = 0.97 Reliability of module 2 i{f
b~ Ry = 0.96 Reliability of module 3 e
P R4, = 0.95 Reliability of module & —
- Rg = 0.999 Reliability of module 5 .
S g ")- X
alN\
. . . . Yt
i'.: The path probabilities depicted on the flowchart in Figure G-3 can Y
"': be represented as a matrix, P as follows: .
3 e
\J ~
ny! 0.8555 0.095 0 0 0.05
. 0.45 0.45 0.1 0 0 | .
. P =] 0.45 0 0.45 0.1 0 R
- 1.0 0 0 0 0 \:;5
=y 0 0 0 0 0 S f
-::- .\:
v The entry in the 1'th row and j'th column represents the probability of Ea
module 1 passing control to module j. -
iy ..'("k
':f",- It we were to attempt to evaluate all possible conditional probabili- ;:
‘ ties, the number of calculations would be astronomical. The following is a
e very short list uf some of the possible paths: ‘
) e
1-5 1-2-1-1-5 1-2-3-3-1-5 =
b 1-2-1-5 1-2-3-4-1-5 1-2-3-3-1-2-2-1-5 e
N 1-2-3-1-5 1-2-1-2-1-5 1-2-2-2-3-4-1-5. T
"::-‘_ Computation of even a single path requires the multiplication of all the :::::‘
-5 path probabilities and module reliabilities involved in the path. For W
e example, consider the path 1-2-3-4-1-5. The conditional probability,
-1 C, that it will be successfully accomplished is computed as follows: oy
N L
m _ ey
= C = (RP IR (R (P, IR, I(P, IR)P o) (R) 23
» = (0.98)(0.095)(0.97)(0.1)(0.96)(0.1)(0.95)(1.0)(0.98)(0.05)(0.999) . ::‘»‘*
é = 4.03E-5. A{‘jﬂ
L hC%t

-f'!,'x[‘ l‘
rt

G-5

wSr
el b s
|5 08 W &P S N
L

RY]
4

NP

0
.

v

ool

Yy o
-l ‘\-',,
"~y
.;0' >..
i &
x‘.‘ ..L::'
2‘_. At first glance it appears that this value is extremely small. However, '
T this path represents only one of the essentially unlimited number of
! ossible paths. RSN
R p P]
; The reliability of the overall software subsystem is the sum of the .:-';
f‘; conditional probabilities of all the possible paths. If the program 1is .:i
: structured, 1t may be possible to compute the overall reliability by hand S
|D despite the fact that there may be an infinite number of paths. This N
A would be accomplished by assuming that the effects of certain paths are S
;; negligible. Even so, the task 1s extremely tedious. 1f the program is :
o not structured, the task of computing reliability by hand borders on the D
N impossible. oy
i oY

The alternative is to use the Markov analysis in a manner described
v by Cheung [l]. Using the matrix P as defined above and the reliability
o matrix R defined as: ‘
-
o 0.98 0 0 0 0 7
L; 0 0.97 0 0 0 iy
® R = 0 0 0.96 0 0

- 0 0 0 0.96 0
o 0 0 0 0 0.999d . i
0 :-I-:
1::') We compute the matrix Q = R*P, The matrix Q then is S

: 0.838 0.093 0.000 0.000 0.049 e

o 0.437 0.437 0.099 0.000 0.000 peeel
:.':: Q =] 0.433 0.000 0.432 0.096 0.000 ::."-
Y 0.950 0.000 0.000 0.000 0.000 “-:;
:'S‘:'i 0.000 0.000 0.000 0.000 0.000 "
\ Ol

C-)- The matrix Q transforms the success/failure status of the software a
vl trom une state Lo another. In order to determine overall software e
1-:: reliability, 1t 1s necessary to sum all possible transformations; 1.e., ij
-_"‘- e
::5:: s=1+Ql + Q2 +Q3+ Q%+ + Q! E:
s "o
y il where 1 1s the initial state (the identity matrix) and 1 is unbounded. Let P
= this sum be given by

F-J:. n= ‘:::
25 3
?-'S:" s = Q . ::."
}-—4 n=0 —
ﬁ.’ It can be shown that the sum of infinite terms can be evaluated as the

- 1nverse of the matrix (I - Q); 1i.e.,

it
18 s = (1 ~-qQ-l “

21,
A

2 4
rx A
(%]
|
[)
»‘v .'r-"r -

~
“
§ =
v .
() “'}‘Fh"- e “n " " - H A “.A “>.- DA '\.\’. ‘v.,". .‘-. -."' n.~ . " . A K A'-‘,'(.h\" ’,. '_..‘-.-. P I A
K ‘ '-‘~.‘ I\ " -
#
Ty,

a
2

SN——

(o
e

G

o

* 2
i

.
MARP SN

¥ P
R i AFL AR R

t 3
s

C 1-" -

e

For this particular example, the matrix is:

13.294 2.196 0.375 0.036 0.651
12.406 3.824 0.653 0.063 0.608
§ =]12,246 2.023 2.106 0.202 0.600
12.630 2.087 0.356 1.034 0.619

0 0 0 0 0

Evaluation of the matrix inversich described above can be very tedious
when many modules are present. It 1s suggested that this step be
accomplished on a computer. Figure G-4 illustrates the printout used to
generate these sample results.

The reliability ot the overall software subsystem can be easily
computed as the probability of transferring control from the first node
to the last node multiplied by the reliability of the last node. 1In this
example:

R(s) s(1,5) * RS
(0.651)(0.999)

0.651.

This example represents the probability that the software will perform
all of its mission functions for a full day. It can then be combined with
hardware reliability measurements to determine overall system reliability.

G-7

| A~
'Y %
| c——
At pe
i
SRS »]
L o
= s
LSS . . PR
~ 4.0 USING THE RESULTS
A Having predicted the software mission reliability, an assessment of ﬁﬂ
ro 1ts acceptability must be made. If the prediction is unacceptable, a -
CHC decision must be made as to where (in the system) improvements can be od
2.(: realized. In the case of software reliability improvement, the methodology -
"\'- can be utilized to test the effects of various design, development and Wy
V) testing philosophies by incorporating the pl factors associated with a o
o proposed approach and reaccomplishing the mathematical computations. It Py
18 . . o
Sy can be used repeatedly to test tradeoffs before a commitment is made.
o, et R
%2 3N o
L . . . -
Lo Additionally, the methodology can be used to periodically re-calculate
S reliability predictions and refine them as the Jevelopment progresses and “
better estimates of module reliabilities and path probabilities are avail-
b able.
- |)
.\“'l'
'~
~\"‘
e
3y
K}
. -
¢
I o
N o
~ _‘-' N
8
',":‘: 'r\
' -
4
I."A
My,
A
Y
l"\‘rd
I
1
.
» e
>
R >
'r.:"'J ht
‘--'\.' o
_‘.__* ‘™
40 "~
LR v
S =
.:-_..: .
-.I"
S
¥ J'.
‘:-'_ G-8
» *.
b ¥
A -
o T p) L N TR W e
"-.'*;"\f."" ‘i\ﬁ}..(-,\ s .-,, H_.r N} " \),“:5\‘ [f: =
.'..)..-'%».v_.-h) > ot
abadatk Paddiidden "

T

‘; (START)

D & WSYSTEM

- SEARCH
18
1y
b
-
&
8
! PREVENTATIVE PERFORM
! MAINTENANCE MAINTENANCE
A v
.‘ »
B (STOP)
‘ L]
. -
.
POSSIBLE
TARGET 1
1
N
.
) ACQUIRE
K
)
{ '}
 «
.
.
I .
1
.
TRACK k3
- R
2 :
\: 1-
TARGET
1
N ISSUE
% MESSAGE
g !
N
‘ -} _—
" ad —l— A
X Y
.‘ _-. u
N N
LY . .
; Figure G~l. Functional Flow Chart j‘
._\‘.__'_‘
.:‘.._‘1
J: SRS
\-. ..\..\vd
. OSRS
- SRS
-.\n..-i

. “foll - N oWy . e - C % L Gl Bl Bl S A Sas Sk B b Anm SR A SIACA o iear sl &AL BAA ALe ARl il ol o

\‘:‘.: g
AR
~.
5 b2
28 X
MCHKSHEET No. 1 3
; INHECENT CHARACTERISTICS - Cl1) NOMINAL CASE 1 by
L_{ FACTOR (check) ca1 Ce2) L) Ce)
v PRCDONINANTLY CONTRL e an 299 192 138 %
" PREOONINANILY REAL TIE 308 308 203 166 ~
*::5’ PEDOMINANTLY INPUT/OUTPUT . 205 256 A2 08 ,
N PREJONINANTLY INTERACTIVE 220 .42 264 RES 2
o PREDOMINANTLY CONPUTATIONAL v o 169 133 Al
‘ MY DISTINCT OPERATIONAL MISSIONS ... 385 299 178 141 .
N SEVERAL VARIATIONS OF CPERATIONAL MISSIONS ... 367 299 178 16
S:NGLE GPERATIONAL NISSION v 373 251 194 21 '
i:i;%_'. MANY QPERATIONS REQUIRED - HIGHLY INTERRELATED .. 38 I 151 146 N
. NANY OPERATIONS REGUIRED - RELATIVELY INDEPENDENT ... an 23 187 191
O FE« OPERATIONS KEGUIRED - WIGHLY INTERRELATED ... 346 316 168 a7 2
7w OPERATIONS REGUIRED - RELATIVELY INDEPENDENT et 343 240 182 218 ;
o EXTENSIVE MARDWAKE INTERFACE REGUIRENENTS ... 262 A2 209 104 £
o NININAL HARDWARE INTERFACE REQUIREAENTS ... a1t 284 214 175]
- EXTENSIVE SOFTWARE INTERFACE REQUIKERENTS ... 284 A7 175 13
- NININAL SOFTMARE INTERFACE REQUIREMENTS _o.. 307 275 215 189 »
ok EKTENSIVE WUMN INTERFACE REQUIREMENTS ... 270 381 267 12 j-'i
R NINCWAL HUNAN INTERFACE REGUIREMENTS ... 22 269 213 178 "
- WIDE KANGE OF ERROR-PRONE INPUTS ... 303 2% 283 176 .
}';:'.f: Wi'C KANGE OF ERROR-FKEE INPUTS ol .304 253 247 92 f'.?;
o NARKON KANGE OF ERROR-PRONE INPUTS ... 313 23 259 160 2
Jb-l NARKOM ANGE OF ERROR-FREE INPUTS R At 237 246 200)
.-
&,.' SUM OF THE VALUES CHECKED: 12> 99 76 127
o N S B il ool
V
s ~
;.: Figure G-2a. Track Module Worksheet No. 1 "
¥ - W
SO o
"". 3
2 ;
o G-10)
2 o
i
iy .

'rl ‘\,. '*.Ql’!: . .‘-

r\c.
*4"‘7**’

O

s
‘I/II

P
0
3 8.3

P}
-

-- [q
LOLNNCNRA

. ',A"

WORKSHEET No. 2

ERROR AVOIDANCE TECHKIGUES - nl1) NOMINAL CASE

FACTOR

INDEPENDENT GUALITY ASSURANCE ORGANIZATION
INDEPENDENT TEST QRGANIZATIOK

INDEPENDENT VERIFICATION AND VALIDATION ([v&\)
USE OF A SOFTWARE SUPPORT LIBRARY

USE OF A SOFTWARE CONFIGUKATION CONTROL BOARD
TRIROUGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN
RIGIDLY CONTROLLED SYSTEM REGUIRENENTS SPEC
KIGIDLY CONTROLLED INTERFACE DESIGN SPEC
RIGIDLY CONTROLLED SOF TWARE REQUIREMENTS SPEC
RIGIDLY CONTRQLLED SOFTWARE FUNCTIONAL DESIGN SPEC
RIGIDLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC
REGUIREMENTS TRACEABILITY MATRIX

STRUCTURED ANALYSIS TGOLS

PROGRAM SPECIFICATION LANGUAGE (PSL}

PRIGRkAM DESIGN LANGUAGE (PDL!

HIGH ORDER LANGUAGE (HOL!

HIERARCHICAL, TOP-DOWN DESIGN

STRUCTURED DESIGN

SINGLE FUNCTION MODULARIZATION

STRUCTURED CODE

USE OF AUTORATIC MEASUREMENT TOCLS

YSE OF AUTOMATIC TEST TOOLS

PKODUCT OF THE VALUES CHECKED:

ABQVE PKCDUCT SI/BTRACTED
FROM ONE:

Figure G-2b.

1-A(1) -A(2) A IEDIE S
644 652 697 697
696 662 651 646
431 661 648 622
779 <7 72 L7157
774 679 aN 831
672 682 668 47¢
RLY 617 677 698
498 L4866 630 L 769
598 609 634 -0
8637 612 A58 036
617 606 610 .997
645 681 .738 17
,663 694 7 .42
.682 710 . 748 L1682
643 .687 I 14
YL . 706 698 efd
617 ,633 688 N
619 L6540 677 ne
625 674 4c% 6°
629 695 N hb3
781 780 e i
09¢ 7.8 32 492
A80 . 9. 26 23Y
Y20 %3] .BRY. 266
Ayl A A3) IS

Track Module Worksheet No. 2

G-

e P
WA R i

|'J

L
o' s

2

- ©
f(‘l)cf‘ .

>
ity

l‘,‘l

R

23

¢ w Pl g s
2

X 4 l.,t',;l'
o Tty
£ 1 A4

2

PR
O L 4
.
. - .
z €.

e
’l’l’l
’ . 1

a’a

2

2&‘4(

P,

"2
or
P Te

oy Ay By
:“ “ .
r %t

=4
e
WORKSHEET No. 3 3
ERKOR DETECTION TECHNIGUES - D(i) NONINAL CASE MODULE ! ~----mmm=mmmmmmm T2 T — o
FACTOR (check) 1-Dil) 1-2(2) 1-D(3) 104y
FRCQUENT PEER WALKTWROUGHS 548 595 621 607 AV
INFREQUENT PEER NALKTHROUGHS - 749 75 805 91 =
FREQUENT PROGRESS REVIEWS e 755 780 765 802 hs
INFREQUENT PROGRESS REVIEWS 890 890 898 912
FREGUENT GUALITY UDITS 72 731 733 755
INFREGUENT QUALITY AUDITS 862 868 880 88 -
USE OF SOFTWARE PROBLEW REPORTS PRIOK TO PGT ... 666 668 703 66 hY
USE OF SOFTWARE PROELEM KEPORTS SUBSEGUENT TO PaT e 73 2 748 742 r
US OF SOFTWARE PROBLEM KEPORTS SUBSEGUENT 10 FOT .. W0 5 716 763 754 N
USE OF SPECIFICATION CHANGE NOTICES (SCN's) coooeee 807 79 11 g2¢
USE OF ENGINEERING CHANGE NOTICES (ECN's) _o___ 79 79 802 818 ;
SOFTWARE KEGUIREMENTS REVIEW (SRR) .. 686 669 720 786 3
PRELIMINAKY DESIGN REVIEN (PDi! v 74 679 . it ¢
CPITICAL DESIGN REVIEW (CDF) e 677 672 695 728 :
TS READINESS REVIEW (RO . 799 766 781 797 Y
Fu:CTIONAL CONFIGURATION AUDIT (FCA) .. 816 282 792 817 o
PHYSICAL CONFIGURATION AGDIT (PCA) .. 851 826 823 855 c,f
INFORMAL UNIT-LEVEL TESTING v Sb6 662 658 544 o
PrLININARY GUALIFICATION TESTING (PGT) . 639 659 682 679
FURMAL GUALIFICATION TESTING (FGT) v e 700 711 698 l
SOFTWARE INTEGRATION TESTING o 651 550 616 bbb)
SYSTEM INTEGRATION TESTING . 670 587 633 668 L
OPERATIONAL FIELD TESTING 673 648 637 666
PRCDUCT GF THE VALUES CWECKED! A7 B0 106 .12k :
ABOVE PRODUCT SUBTRACTED 3Y3 B0 2997 .82Y =
21 D(2) D(3) D(4)
i
Figure G-2c. Track Module Worksheet No. 3
'\'
-3
G-12 -

" WORKSHEET No. 4

W

MGDULE RELIABILITY CALCULATION - NOMINAL CASE NODULE: ----- Toemmmeme oo omeo oo

X33

-
B " x

a0t A1) substitute aeprgeriate A(i) and C1) calculate
L{1 = H - 2 ecomccemccveom—=-
1.00 - DGi)#(1.00 - A(Q)] substitute apereeriate A(i) and D(1)

R, A A

AULIC(L) 320 (3’"/\ . _.307

1.00 - D(1)8(1.00 - A1)}) — .93 (/- .?80\)

ADC(Y)

il s R

oy . e . .33 (-33‘/) LAY
| — 8201~ .33)

'
»
Py
ot

1,00 - D(2}4{1.00

oy
et

;
Y
£
- A(3NACI ‘ ()
S TP bl . 327 ,'l39 ________ : w121 "
: 1.00 - D(31#(1.00 - A(3)] |~ .75Y (/- ,3;% i
2 i
at f{
“ s
W o
- &
; o - MAEW _ . 266 (:273) A9 =
w ! fUw s = T T T oo s s o s R it -y - z2 emeeTaaTa ————— AR
1,00 - D(4)#{1.00 - A(4)] g
: O +) / — ’ BQL/(/-— . 7é®
- SUM ALL THE ADC(1) TERMS --) ‘963 ----- -
\
\ i ":
Figure G-2d. .Track Module Worksheet No. & I -',::-:1
5 {copy) AR
¥ Qe
. A1/
\ \/
~
» G-13 96
. CALCULATED ENWANCEMENT FACTOR - NOMINAL CASE ------f----
"
4
! ‘_-..';.:_-.:_-.'_ﬁ.‘ LY

4. %
IO RN

S Al aan aa an. Ads aen

KNS ‘.-...-...,..x-..-‘- wh ERTOR i ,.-Jw.-. r.r..bs Ko, ..0.;%\. o 0r..‘s”““,r B RSN o PSP f\»t»n-\;«\....n‘n.. NN X A
s 4 v ol g8 Wt S e Al SR A MV MDA R
0
4]
- o
o « €
)
4
-
>lo L
)
© s
v
M) & 2 : 5
™ r e
4 v o O
™ P4 =
o « 3
= o O o
w - —
- L fx,
[
Y 0 ©
M 2o @
oot ~r
R e
: C : _
P [&)
c
<<
8 & -
) o '
n ©] Ny O
L] 6
D < —.e..
o«
3
o0
ced
fe
e 3 4
o
g -
5l -
[+ 4

s
|

P I T D T R O —

‘;iﬁﬁf"w

20
-
-
*
!]
- MODULE RELIABILITY MATRIX (h!:
e 0.5E0 0.570 0.960 0.550 0.55¢
oy
o PATH MATRIX (P):
| 0.855 0.095 0.000 0.000 0.050
0.450 0.450 0100 0.000 0.000
0.450 0.000 0.450 0.100 0.000
a 1.000 0000 0.000 0.000 0.000
) 0.000 0,000 0.000 0.000 0.000
o
o CONDITIONAL PATH MATKIX (6 = huP):
0.838 0.053 0.000 0.000 0.04
o 0.437 0.437 0.097 0.000 0.000
o 0.43: 0.000 0.43z 0.056 0.000
& 0.650 0.000 0.000 0.000 0.000
S 0.000 0.000 0.000 0.000 0.000
o IDENTITY - 6 MATRIX (W = I-GM
0.162 -0.093 €.000 0.000 -0.045
- 04 0.ed 0,06 0.000 0,000
g -3.4%0 0,000 0.568 -0.C%6 .00
.12 -0.¢50 0,000 0.000 :.000 0.000
"3 0.000 0.000 C.000 0.000 1.000
A SCLUTION MATRIX (S = INVEREE i)

13,094 .19 0,398 0.0G6 O.6t!
- 12.406 3.€24 0,635 0.065 0.60E
™ 12,246 7.02% 7.106 ©0.20 0.600
% 12.630 2.087 0.356 1.034 0.619
N 0.000 0.000 0,000 0.000 1.000
“

SOFTHARE AELIABILITY (R(n)#S(1,n)) = 0 0.631

)
&
X
-~
. Figure G-4. Computer Output |
‘ e ‘.-
S s
‘-: [N
1] b'.» .'J
B Lt
O :'--."i
3 ARICE
i.' atal
A .
. 1‘:‘
' <
YA -*x
. 3
- G-15 AT
104 X x
o b
R
PO s e il f,*-,"\"‘ SR L N el e A
) AN RN - Rotates Sl : . e T
“(. ‘.'J(-' ,‘,4‘ 1".1-/-’."\.‘-(-." \“ “).‘"w 's . y e e o o J

i

APPENDIX H

ASSAULT BREAKER

Lt o 3

ey

YT -

R A

- g

P R R T R TR T P PR P o T P T E WV T T T a

1.0 INTRODUCTION

The Assault Breaker project was chosen to illustrate a typical appli-
cation of the reliability methodology to a real-time system. Assault
Breaker is a recently completed Martin Marietta program which involved a
tactical missile and its controlling software.

Iy 1’.‘:1‘;14

SO W

L)
AL ARN

H-2

-
Y,
.
.
o
b
s
L}

5

i‘:.' -’_:-'
L 1g
v‘ ot '_-_ X
N i
o 2.0 THE PROBLEM DESCRIPTION oo
Ty A
b The Assault Breaker software was tasked with launching the missile, W
oS steering it to a target area and dispensing submunitions. The hardyare =5
}ﬁ portion of the system interfaced with the software by providing positional W)
ol data and by accepting guidance commands. :it.
o ~od
g The flight software was decomposed into nine distinct functions or E%}
i modules each requiring execution periodically as shown below: ey,
!
r: 1. Program initialization 1 time
At 2. Executive control program 200 Hz
.k: 3. Digital autopilot 100 Hz
A 4. Flight control 10 Hz
‘ 5. Navigational filter 10 Hz
6. Antenna select 10 Hez
;k 7. Target processor 10 Hz)
- 8. Dispense 10 Hz ; N
,ﬁ 9. Steering (Guidance) 10 Hz :xju
- -
- a. Launch initialization g
[b. Initial turn steering
b ¢. Midcourse steering -
'ﬁ. d. Terminal steering. :::
-, ?"_ "
< Since the software was required to operate in real-time, an extensive e
h analysis was performed to determine its best overall structure. A brief f{}
. recap of that analysis follows. Y
¥ . o . . . {5
- Analysis of the missile rigid and dynamic body bending moles dictated prt
‘o a digital autopilot operating at a 200-Hz rate to maintain mis.ile stabil- Sy
{3 ity. Further analysis of the dispense accuracy requirements resulted in st
Wy dispense commands being initiated at a 200-Hz rate and being tuned accur- FIL
g ately from time of launch including missile variations from the nominal ?'
flight trajectory. Maximum flight from launch is 180 seconds. DR
) W
?: Launch coatrol and self-test, launch initialization, and program $:¢‘
o initialization modules are all completed prior to launch when none of the ;ﬂj‘
pf missile flight programs are operating. These modules have lower priority f:#
for reliability as there are many checks bullt into the system operation to
< verify the accuracy of the missile prior to launch.
N
g Performing a timing and loading analysis of the program functieons and

applying these timing results to the reliability model resulted i1n a very
poor reliability value tor the overall program. The accuracy requirements
with the supersonic stability requirements dictated an accurate time line

control ot functivn completion to eliminate phase deiay errurs 1n the ~T
04 uncertalnty ot the time that any particular computation was completed. ':53
A ‘u ‘x" .
‘ . . . N ‘. ‘“\1
:E The results of this analysis led to the selection of a structured AN
AS execultlve format rather than a task driven executive. Using this .\ZQ
1i A~
-5
- g
- ,?i
L o ¥
- W
b H-3 Sy
-, }Vf
1 et

.‘.

C
i

3

-
& a0

s
5

TNt ‘nﬂ

structured technique with the timing analysis, the functions were decomposed
into modules to be performed in a time controlled sequence. The autopilot

N function was a known function in this structure which was required to be ~]
[\ performed every five milliseconds (200 Hz). Worst case analysis of the I
P timing of this module was shown to be 700 microseconds. The executive -

B> . . . DAEAS
&S module was designed not to exceed one millisecond and actually used 720 el
[} .*‘r,.

microseconds worst case.

Each ot the functions was decomposed into submodules with a design

» goal of one millisecond and not to exceed 1.5 milliseconds. The result was
; that of each five millisecond period, the worst case time usable required
. to complete all modules was less than 3.5 milliseconds. This resulted in a
¥ probability of one that each module would be completed in its assigned time
slot, providing no hardware errors occured. The executive program was

R designed to verify that no real-time module was in operation when the five
A millisecond real-time clock interrupted.

"’.I

t: By structuring the minor cycles of five milliseconds into 20 cycles to
ﬁ‘ a major cycle (100 milliseconds) the accuracy constraints of the missile

4 requirements were met.

»,

.

4

| "
LY S

R R R TR R I R R S
S e e S e
oW, J"\-". &, -";‘_ IR S
P, N PR

" -“~f ie

LN kN H

>
D)

e w - W - >4 - v A e e L T W

_, N » —an v v Rl R

|/
3 3.0 APPLYING THE METHODOLOGY
K
[»
l 3.1 Preliminary Analysis
N Figure H-1 depicts the final functional flow diagram of the flight
f software. It is representative of many real-time application programs
i which have been constructed in a top-down manner.
v Figures H-2a through H-2d depict the worksheets used to determine the
KN reliability of the Antenna Select module. It should be noted that on the
i Assault Breaker project, many reliability enhancing techniques were
;. employed. This resulted in relatively high individual reliabilities. Each
\ of the modules was evaluated with the following results:
" No. Module Name Reliability
A 1. Program 1nitialization 0.999
:? 2. Executive control program 0.996
N 3. Digital autopilot 0.990
R, 4. Flight control 0.987
i 5. Navigational filter 0.998
; 6. Antenpa select 0.982
7. Target processor 0.992
Y 8. Dispense 0.999
l' 9. Steering (guidance) 0.992.
Functional thread analysis was relatively easy. As was described
above and depicted in Figure H-1, the system is initialized one time; and
o subsequently, the Executive module directs the logical flow to the Auto-
. pilot and then to one of the six functional modules. Each of those modules
% returns control to the Executive. Investigation into the timing analysis
" that had been performed revealed that several of the modules required more
e than one cycle to complete. Specifically, each module was allocated a
specific number of cycles for completion of its functions. The path
;2 probabilities used for the reliability analysis were therefore computed as
e the proportion of a 20-cycle period that was allocated to each module:
1
- No. Cycles Path Probability
i No. Module Name Per Period From Autopilot
4 4. Flight control 7 7/20 = 0.35
f 5. Navigational filter 3 3/20 = 0.15
R 6. Antenna select 1 1/20 = 0.05
D . 7. Target processor 3 3/20 = 0.15
; 8. Dispense { 1/20 = 0.05
9. Stecring (guidance) 5 5/20 = 0.25.
. The only other path probabilities to be considered 1nvolved determin-
; ing how to stop the program. Obviovusly, with a missile system, the computer
i sottware will continue processing until the missile 1s destroyed. To alle-
w viate the possibility of endless looping (in the m ‘hodology), a ticticious

S
.
s

Y -

K H=5

-
"
-
]
”

E 2

L
»
S |

<

- i
'?W module was created. It was labeled as the Termination module on Figure H-1 {}
n-ﬁ and was arbitrarily assigned a reliability of 0.999 to minimize its impact ti
o on the analysis. Since it is only executed one time, its effect Lo the
o analysis 1s negligible. 3
) \l~l : .;.
v:{ The next major consideration to be made was to probabilistically o
;-:} define the path which leads to termination. Review of the functional :H
fyﬁ decomposition revealed that the software performed under tour specific v
:~5 modes of operation. Since these mode changes are the poiuls where rela-
) tively drastic changes 1in the L1nput domaln are scen by the sotiware, il was n
‘f:' decided that the path probabilities from the Executive should be computed o
?yi based on the tfive (including Terminaltion) mode changes accomplished during H?
E}~ the 1atended mission. That is, the value of the path probabiiity going 5-‘
NN trom the Executive to Termination was set to 0.20 (one mode/five possible) 2
’ and the path to the Autopilot was set to 0.80 (four modes/five possiblie). .
2 Finally, the module-to-module path probabilities and the module }h
_{;Q reliabilities were entered on the functional flow diagram (Figure H-3) -
AN for later analysis. Note that in Figure H-3, the module names have been 3
Y replaced by module numbers to facilitate the mathematics that are per- o
- formed in the next section, o
-fif Armed with individual module reliabilities and path execution prob- b
" abilities, the reliability prediction methodology was applied exactly as o
Y already explained in Appendix G. The output of the analysis is shown in .
f:Q' Figure H-4. The predicted reliability for the Assault Breaker Flight Jﬁ
) Software was calculated to be 0.911 for the mission scenario described ﬁf
above.
.-q
Although there has been insufficient test points to establish the QS
validity of the prediction and hence the validity of the methodology, the ;{
little data that 1s available 1s quite interesting. Assault Breaker tlcw -
10 flights during demonstratiova testing. There was only one tatlure and o
the computer software was not charged. However, the correction to the
problem was accommodated by a sottware enhancement Lo pertorm additional o
checks prior to launch. 1If we surmise that the cnhancement should have -
been 10 the original sottware design, we would be torced to charge the &1
sutlwdre tor the tailure, yielding a sottware mission reliability vaiae ot e
0U.90, almost exactly what the methodology predicted. if
. 1
" . ..'.'
Wd
ny ::.'
" o
<. s,
’| :‘." ':' ¢
wi b
]
P\ A-"-_ \.~
[t.\
H-6 .
¥ 2_‘.:: :
(as N

L [T TR S S § Q

e pipioin T~ i ~

ORI AR SRR

oa_.e o A, A I T N SN AP ol
Tele e s, O I R N I SO B

]
o
——— .:u ————
»
4
¥
= s
& g w 1 3 —™
«© - - [s]
5 T s
2 g z
@ 3 [m
2 @ w -
g ...m - w..n
bt >
) o 3
—| =3 — g
> o I
[[l
3 I m w - —
" 2 5 £ 2 Z
= q > & z
; w N_ © o - T
i = w - =
= x E -
E o m < =z
Z z B
h 2 &9
] +n|' e
2 .
p < —
|
" =
o
3 3
b el
(€9
b >
1 4 < b
1 2
]
a
— o
'S
]
——
]
]
w. v-.,.-. .W- ; RS I O e o < -.LU.v.A.\‘-‘.Hi,-,.A VTt ‘-..r..p T ‘ P
P i B SR | b e r vy (3 a0 B8 ..-...-..\ J . e > I N g o A p "o v v . - u
OO, AN R ARt \ SO, SOOI) (RRAY- AIRBOOR) CODOCR o DARRAL LI
- ’ L_J 3 1 A '3 a ¥ LA v

a St e

WCRKSHEET No. 1

INHERENT CHARACTERISTICS - C(i) NOMINAL CASE MODULE: éeﬂff,&«ﬁjﬂ.;cf -----------

PREDOMINANTLY CONTROL e XY .299 197 136
PREDOMINANTLY REAL TINE o .308 .308 203 166
PrcDOMINANTLY INPUT/QUTPLY s 205 256 423 108
PREDOMINANTLY INTERACTIVE - 200 342 264 A28
PREDOMINANTLY COMPUTATIONAL _-K 23 169 133 AL
MANY DISTINCT GPERATIONAL MISSIONS e . 365 299 A28 .14]
SEVERAL VARIATIONS OF OPERATIONAL MISSIONS ceceeeo 362 .258 178 162
SINGLE OPERATIONAL MISSION _~K .323 .25t 194 202
MANY OPERATIONS REGUIRED ~ HIGHLY INTERRELATED cacoeee .388 316 A3 L4
MANY OPERATIONS REGUIRED - RELATIVELY INDEPENDENT ..o 372 236 .187 191
Few QPERATIONS REGUIRED -~ HIGHLY INTERRELATED cceoes 344 - Y.} A2
FeW OPERATIONS REBUIRED - RELATIVELY INDEPENDENT --/..l 343 240 .182 218
EXTENSIVE HARDWARE INTERFACE REGUIREMENTS . .22 AZS 209 104
MINIMAL HARDKARE INTERFACE REQUIREMENTS _-_‘_.{ A1 .284 214 A7
EXTENSIVE SOFTWARE INTERFACE REQUIKEMENTS284 A17 175 13
MIN{RAL SOF TWARE INTERFACE REQUIREMENTS --_!{ .307 205 218 . 189

)

)

EXTENSIVE HUMAN INTERFACE REGUIREMENTS . 20 .34 267 112
MINIMAL HUMAN INTERFACE REGUIREMENTS ... 322 269 213 .78
WiCE KANGE OF ERROR-PRONE INPUTS .. 303 236 .83)
W WANGE OF ERROR-FREE INPUTS .. . 304 233 247 90
NARROM KANGE OF ERROR-PRONE INPUTS ... 313 .236 259 N
MARKON RAMGE OF ERKOR-FREE INPUTS . A1 237 .46 L200

SUM OF THE ALUES cWeckep: 0 AsRe Ll il l Ll

AECE SUM DIVIDED kY . . . t
THE NUNEER OF CHECKS: 312 AN BE f?u
e L 3 Ci4)

Figure H-2a. Antenna Select Module Worksheet No. |

AL ATA At i Rrl ath ASA-AkE Mt agh oo .2 Lao. 2

WORKSHEET Ko, 2

ERROR AUDTDANCE TECHNIGUES - AC1, NOMINAL CASE HODULE: ---=---- s LA e e e -

FACTCOR {check) AL 1-A(2) L-ALT 1-A(4)

INDEPENDENT GUALITY ASSURANCE ORGANJ2ATION . __ NLY 653 697 657

INDEPENDENT TEST QkGANJZATION aan .696 662 651 bbb

INDEPENDENT VERIFICATION AND VALIDATION (IV&V) . 631 b8! 048 N

SE OF A SOF TWARE SUPPORT LIBRARY -_J_/ a1 L1587 2 757

1SZ OF A SOFTWARE CONFIGUKATION CONTROL BOARD --.‘K J 679 ey .831

ThIROUGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN ______ .672 S$i2 . 668 N ‘
HIGIDLY CONTROLLED SYSTEM REGUIREMENTS SPECb4o 417 677 .696 i"
KiGIDLY CONTROLLED INTERFACE DESIGN SPEC . 656 g6 L83 . 768 ;:\'
RI3IDLY CONTROLLED SOFTWARE REQUIREMENTS SPEC ,_.‘{ .598 605 634 b8

RIGIDLY CONTROLLED SOFTWARE FUNCTIONAL DESIGN SPEC -_!{: 637 412 632 <036

RIGIOLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC .. 617 . 608 610 597

REGUIREMENTS TRACEABILITY MATRIX _--L{ LG43 b8! i LT

STRUCTURED ANALYSIS TGOLS o 663 694 717 Y

PROGRAM SPECIFICATION LANGUAGE (PSL) ... 682 710 748 el

PLOGRAM DESIGN LANGUAGE (POL: L. 643 .687 O I e
#iH QRDEN LANGUAGE (wOL) . 674 708 .638 N '_'..vz
ERARCHICAL, TOP-DOWN DESIGN ___!(617 633 -bES RN ;i','
STRUCTURED DESIGN ___‘__/_ 619 .64C 677 N k
SINGLE FUNCTION MODULARIZATION --_‘K 625 NYO N1 66T

STRUCTURED CODE .. 629 695 I 663

JSE OF AUTOMATIC MEASUREMENT TOOLS ... 761 . 780 S RN

.St CF ALTOmMATIC TEST YGOLS . .09¢ .78 K EN

PRODUCT GF THE VALUES CHECKED: --=-%-=--- - S Ak

Ay - -
o oa Tl G657 965

Figure H-2b. Antenna Select Module Worksheet No. 2

RO

[N

r 7
f
[bR

.

D I W)
A

v ‘--'l‘- - k N
W

WORKSHEET No. 3
ERKOR DETECTION TECHNIGUES - D{i} NOMINAL €ASt

(check) 1-041)

FREQUENT PEER WALKTHROUGHS
INFREGUENT PEER ALK THROUGHS

FREQUENT PROGRESS KEVIEMS

INFREGUENT PKOGRESS REVIENS

FREGUENT GUALITY AUBITS

INFREGUENT QUALITY AUDITS

USE OF SOFTWAKE PROBLEM REPOKTS PRIOK TG PGT

USE OF SOFTMARE PROELEM KEPORTS SUESEGUENT TC PGT
USE OF SOFTWAKE PKOBLEM KEPORTS SUBSEGUENT TO FGT
USE OF SPECIFICATION CHANGE NOTICES (SCN's)

USE OF ENGINEERING CHANGE NOTICES (ECN‘s)
SCFTNARE KEGUIREMENTS REVIEW (SRR)

PRELIMINARY DESIGN REVIEW (PDK)

TxITICAL DESIGN REVIEW (CDR)

TeST READINESS REVIEW (TAR)

FunCTIONAL CONFIGURATION AUDIT (FCA!

PHYSICAL CONFIGURATION AUDIT (PCA)

INFORMAL UNIT-LEVEL TESTING

PnELININARY GUALIFICATION TESTING (PGT)

FGRMAL GUALIFICATION TESTING (FAT!

SOF TWARE INTEGRATION TESTING

SYSTEM INTEGRATION TESTING

OPERATIONAL FIELD TESTING

e 4

.
'l.' ; Ll
o Lo

PRGOUCT OF THE VALUES CHECKED:

ABOVE PRODUCT SURTRACTEL
FROM ONE:

£

A M S

Figure H-2c. Antenna Select Module Worksheet No.

LrCALrt ot

a

A A S
CAL

-

ol

R4

WORKSHEET Neo. 4

oy _ _
MCD:LE RELIABILITY CALCULATION - NOMINAL CASE NODULE Yo BrTern SLETT

4
3

-

200"

v - NN ey

) fl1reC() substitute aereropriate A(1) and C(1) calcylate
A1) = -=me B e s I

$,00 - D(1)#{1.00 - A(1)) substitute areropriate (1) and D(1)

. ®
N
.,

A
oAy

FYWe

LR E R — : Agm-mmonon i e

100 = D(1)#(1,00 - A(1)]) - . 9;7()- .965

g ACIC(T) . G5 '3’1\> :3//

e+ : . 965 (-2) . R2YY
' 1,00 - D(2811.00 - A(2: - .95 (/ _ -763

'
>
=y
s

o - AGIC(3) 941 (’ '38} 137

PI703 2 memmmrmmcmeeccececeeceaa- : R et WL EEEE L EL R z

: £.00 - DI3:e01,00 - A3 / - 932 (/« .GLIQ

N
p -2
2
Py
-

1,00 - D(&)#(1.00 - AL4:]

, : ACHIAC(4) _ . 92y AY) AYJ

R

SUM AL THE ADC{:l TERMS --v --n-lOZToo

Figure H-2d. Antenna Select Module Worksheet No. &4

(toev)

R YOO AR e AR

SRy
\/

H-11
CALCULATED ENWANCEMENT FACTOR - NCNINAL CASE '?5‘;2

.- ey o - o e o e - R P T P W T Wy 3

LAUNCH ASSAULT BREAKER

>

A

Z't R = 0.999
(y 1

‘ -
o R °‘9§6

0.80

R=0, R = 0.999
7 10

O g e Vs

o

TERMINATE

X
=t

A
g g ¢

&

‘,1'__ _

: f\';
?
)

0.35 0.15 0.05 0.15 0.05 0.25

3 ll I"‘
A iad

,..,,,w
X

w Y]
a
.
o
- ~
»
»
o

R = 0.982 R =0.992 R = 0.999 R = 0.992
5 6 7 8 9

”~

—

Sosd Figure H-3. Annotated Flow Chart

o e T

el

AN
. .\. . y
A
e w e Uy

>

.

o v w N '\:‘;‘.."A e
T A R R A e T T
Y SR LR ATA

=

* APl L

L Sl S ol

-

TR

by 'l\‘!.i. ‘t‘l“l'n 1Y

0.95% 0.59%

0.550 0.5E7

PATH MATRIX (P):

0.000
0.000
0.000

1,000
0.000
©.000
0.000 {.000
0.000 1.000
0.00¢ 1.000
0.000 1.000
0.000 1.000
0.000 1.000
0.000 0.000

0.000
.00
0.350
0.000 0.000
0.000
0.000
0.000
0.000
0.000
0.000

CONDITIONAL PATH MATRIX (@ =

0.000 0.5%¢
0.000 0.000
0.000 0,000
0.000 0 987
0.000 0.998
0.000 0.982
0.000 0.992
0.000 0.999
0.000 0.952
0.000 0,000

IDENTITY - G MATRIX (W = I-@).

1.000 -0.95¢
0.000 1.000
0.000 0.000
0.000 -0.%€7
0.000 -0.5¢€
€.000 -0.5€c
0.000 -0.%5C
0.000 -0.55§
0.000 -0.¢9:
0.000 0.000

SOLUTICN MATRIX (S =

1.000 4.577
0.600 <
0.000

0.000 0.000

0.000
0.000
0.347
0.000
0.000
000 0.000
000 0.000
0 0.000
000 0.000
000 0.000

0.000 ¢.000
-0.797 0.000
1.000 -0.347
0.000 1.000
0.000 0.000
0.000 0.000
0.000 0.000
€.000 0.000
€.000 0.000
0.000 0.000

iNVERSE

S04 L.D6A
3.651 1.265
4,560 1.I6E
2005 i.c4E
S.od3 1,060
3.585 1.242
ceb21 1.8
S.647 1.264
S.6cl 1,238

0.000 0.000

MODULE RELIABILITY MATRIX (R):

0,556

0.000
0.000

0.c82 0.9%2

0.000
0.000
0.1
0.000
0.000
0.000
0.000
0.000
¢.000
0.000

0.000
0.000
0.149
0.000
0

0.000
0 0.000
0.000
0.000
0.000

0.000
0.000

-0..49 *0 04¢ -0.145

0.8

0.538 0

1,541
e
0,036
0.000

SiFTWARE RELIABILITY (R(n}#S(i,n}) =

Figure H-4.

1
0
0.:42 0
0
0

0.000
¢.000
€.000
1.000
€.000
C.000

0.000 ¢.000

.81 Cldl
8l 0.l4:

0.480

A76 0.5

0.241

A77 0,832
.179 1.538

[0.04C
5 0.53
0 0.000

0.911

0.55% 0.9%:

¢.00¢
0.000
0.0
0.000
0 000

000

0 -000
0.000
0.000
0.000

0.000
0.000
0.049
0.000
000 0.000
0.000
0.000
0.000
0.009
0.000

0.000

0.000

-0.049
0.000
0.0¢00

0.000
0.000

1.000
0.000
€.000

DOr- O OO OO,
. . w s a * e e

O rtrre s e e Rlpas s
S—en< -

Computer Out put

H-13

IR

t*« -‘\

ﬂ \\ \
L% .") \'
n Nodone :!l.c 3

Tmon

S P P O MRS

sy

0.000
0.000

o "t

v

0.000
0.000
0.000
0.000
0.000

0.000
0.000

0.000

0.246
0.000
0.000
0.000
0.000
0.000

0.000

0.000
0.000
-0.248
¢.000
0.000
0.000
0.000
0.000
1,000
.00C

0.905
0.504
1,134
0.892
0.50C
0.£87
0.E%0

0.903
1.6%6
0.000

0.599

0.000

0.000
0.000
0.000
0.000
0.000
0.000
0.000
0.000

0.000
-0.169
0.000
0.000
0.000
0.000

.
L= e Bl e Al - X s R a2l

OO
M : N

SOre >N s A
ORI D rema (P

......

.........

S SN

e e

PRt i 0

APPENDIX I

WORKSHEETS

L1

PO

| S
oL
o -

2" -"l .

Patd e
e

L e

1.0 EXPLANATION OF WORKSHEET TERMS

o okl
»
el

*

1.1 Error Categories

: Each of the worksheets contains four sets of calculations, identified
j‘j via the subscripts 1 through 4. These subscripts are used to separate the
- % effects of four different error types as follows:

! 1 LOGICAL ERRORS - This category includes all instances where a par-

"
’$§. ticular function is incorrect, inadequate or missing du- to insut-
Ay ficient requirements definition, design errors or omissions, or
k: ' implementation errors.
k‘“ 2 INTERFACE ERRORS - This category 1includes all instances where a
" required function is not implemented properly due o improper

v;r communication between system components. All possible antertaces
vty are included in this category:
7&@.
%23” o Software/Software: Includes errors which occur between sottware
KAl components of the system such as when one program unit tails to
@ call, calls in the wrong sequence, or otherwise improperly calls
:::, another program unit. Also included are all errors resulting
{A& from the improper sharing or passing of data and/or control
d:‘ variables between program units.
.".l
O o Software/Hardware: Includes all errors which result 1n loss of

’ data or untimely exchange of data between system hardware and
ﬁAk, embedded software. Included are situations where buffers become
“;:1 saturated or computation cycles exceed their timing allocations.
$y¢' Also 1ncluded are errors caused by improper data exchange
{{"i between system hardware and embedded software.

a
::) o Software/Human: See Input/Output Errors.
:;ﬁ: 3 INPUT/OUTPUT ERRORS - This category includes all instances where a
:{:‘ " required function is not properly accomplished due to the maanner in
L which input or output is implemented. For purposes of this survey,
1”dﬁ include in this category all software/human interfaces. For
(]ﬁ‘ example, on input, the software may either accept improper commands
TSR or reject proper ones. On output, the software may generate 3
#::: erroneous or ambiguous messages to the operator. ‘
R A

4 COMPUTATIONAL ERRORS - These are calculation errors, which include: E

errors of omission such as uninitialized variables; mathematical
errors such as incorrect expressions, conversion and truncation;
and programming errors such as improper use of indices, variables

and overlays. 11

~)

1.2 Worst, Nominal and Best Cases iy
Included 1n this appendix are three sets of worksheets (four sheets -8
each). Each set 1ncludes numerical values for inhereant characteristics, 4
avoldance techaiques and detection techniques as well as a final calcu- -]
.‘1

L

I-2 <3

-4

o

. 1

e ¥ T v - . . Cadh i il alinc decs - Cat A al (A aSR=adh DA™ ek =i e et et Aev e it gas Sot Baq g
ho

o
A, lation sheet. The sets are labeled worst, nominal and best case, respec-
M tively. The values were calculated statistically from the survey data
. described in detail in Volume I of this report. The nominal case repre-
‘. sents the mean response to the survey. Best and worst are the l-sigma
;:} values from the same survey.
o
Y 1.3 Worksheets
‘i\ The instructions for the worksheets are self-evident. The analyst
;:} need only check the appropriate characteristic or technique and perform the
‘;; indicated operations. All four worksheets are based on the equations
.3:1 described in Appendix E of this volume and derived in Volume I.
|
G On Worksheet 1, values for C(i) are listed. They represent the error
type distribution expected due to each listed factor.
-}if On Worksheet 2, the values listed are not the values of A(i) but
?{f rather 1.0 - A(i). Reference to Appendix D will show that the calculation
T ' of the overall avoidance effectiveness requires computing the product of
Wy the Non-avoidance probabilities of each technique used. The representation
o used in the worksheet was chosen to simplify this calculation. When the
§ worksheet is completed in accordance with the instruction listed, the
,ﬁﬁ overall avoidance factors will result.
:iﬁ By the same rationale as above, Worksheet 3 lists the values on
N Non-detection probabilities. When the worksheet 1s completed in accordance
with the instruction listed, the overall detection factors will result.
g
.1 Worksheet 4 provides a straightforward Lmplementation of the

enhancement factor as defined in Appendix D.

@)

e 5o
‘IIAIII

PP}

»

R e S

K
<
&4

-
-
it

T
Tl

T .

Hu

= e oA
ey A
RN, W, .A_‘.,L*LA‘L‘; .J{.-'!

:;:" -3
’.rl
-
2
X :5 WORKSHEET No. 1
A 2 IMERENT CHARACTERISTICS - C(i) WORST CASE MODULE:
o FACTOR (check) Cl1} c2) ca) C)
PREDONINANTLY CONTROL 372 299 192 138
o PREDOMINANTLY REAL TINE — 308 308 203 166
) PREDONINANTLY INPUT/OUTPUT 205 256 423 105
_fN PREDONINNTLY INTERACTIE . 210 342 264 124
s PREDONINANTLY CONPUTATIONML .. 27 169 133 AL
‘24; MANY DISTINCT CPERATIONAL WISSIONS . 365 299 175 141
SEVERAL WARIATIONS OF OPERATIONAL MISSIONS . 362 298 A78 162
o SINGLE OPERATIONAL MISSION e 28 251 194 212
o WINY QPERATIONS REGUIRED - WIGHLY INTERRELATED 385 316 51 149
e MNY OPERATIONS REQUIRED - RELATIVELY INDEPENOENT .. an 2% 187 198
2 FEW OPERATIONS REGUIRED - WIGHLY INTERRELATED ——- 346 316 168 172
! FEW OPERATIONS REQUIRED - RELATIVELY INDEPENDENT _______ 343 240 162 218
R EXTENSIVE HARDWARE INTERFACE REQUIREMENTS 262 425 209 104
t NININAL HARDHARE INTERFACE REGUIREMENTS — At 284 214 AT5
- EXTENSIVE SOFTHARE INTERFACE RESUIREMENTS — 284 47 AT5 A13
~ NININAL SOFTWARE INTERFACE REGUIREMENTS e 307 275 215 189
) EXTENSIVE HUMAN INTERFACE REGUIRENENTS — 270 4 267 A1
g-\; NINIWAL HUMAN INTERFACE REQUIREMENTS .. 322 269 213 178
B MIDE RANGE OF ERROR-PRONE INPUTS 303 23 283 178
J NIDE RANGE OF ERROR-FREE INPUTS 304 253 247 192
o MISROM KANGE OF ERROR-PRONE INPUTS ... 313 23 259 180
Tﬁf\: NARROM RANGE OF ERROR-FREE INPUTS a1y 297 248 200
P SUN OF THE UALUES CHECKED:
: :fj* ABOVE SUR DIVIDED BY
R 1HE MINBER OF CreCks: cn c2 ca cth)
o
pou R
2o b
o N
ot pd
o

LA
Par]
1)
g
x4
7

5 i
i :
e
5 (t‘:\

P
P NORKSHEET No. 2
: ERROR AVOIDANCE TECHNIGUES - ALi) WORST CASE MODULE:
:IQ;’ FACTOR (check) 1- A(1) 1-A(2) 1-4(3) 1-A(4)
:(INDEPENDENT GUALITY ASSURANCE ORGANIZATION — 704 706 T4 755
o INDEPENDENT TEST ORGANIZATION R 749 J15 705 699
-:- INDEFZNDENT VERIFICATION AND VALIDATION (IV&W) . .685 12 704 678
“-.::f USE OF A SOFTWARE SUPPORT LIBRARY . .21 800 84 .803
:'- USE OF A SOFTKARE CONFIGURATION CONTROL BOARD . 819 729 .820 870
K THOROUGH AND ENFORCED SOFTNARE DEVELOPNENT PLAN S 123 702 718 731
4 RIGIDLY CONTROLLED SYSTEM REGUIREMENTS SPEC N 695 666 I 47
}:’ RIGIDLY CONTROLLED INTERFACE DESIGN SPEC S 47 514 680 817
b, RIGIDLY CONTROLLED SOFTWARE REGUIREMENTS SPEC — 647 .653 .82 708
s.'%: RIGIDLY CONTROLLED SOFTMARE FUNCTIONAL DESIGN SPEC _._____ .683 660 703 203
o, RIGIDLY CONTROLLED SOFTMARE DETAILED DESIGN SPEC .. 665 .659 661 J647
&t REQUIRENENTS TRACEABILITY MATRIX02 128 786 819
j; SIRUCTURED ANALYSIS TOOLS e 14 740 766 768
P
» PROGKAM SPECIFICATION LANGUAGE (PSL) S 73 758 TR .801
PROGRAM DESIGN LANGUAGE (PDL) . 690 I3 .67 761
:i;j HIGH ORDER LANGUAGE (WOL) . a2 .52 47 698
HIERARCHICAL, TOP-DOKN DESIGN e .6b4 678 32 .781
STRUCTURED DESIGN .65 688 72 762
; SINGLE FUNCTION MODULARIZATION ... 475 726 750 42
N STRUCTURED CODE el 477 740 269 14
o USE OF AUTOMATIC MEASUREMENT TOOLS 806 .824 814 .805
USE OF AUTONATIC TEST T0GLS —— 749 766 260 43

Y
? PRODUCT OF THE VALUES CHECKED: S —
a0 ABOUE PRODUCT SUBTRACTED
S FROM O T T aa T
nY
“ D
i o
s S
i o

: 3
& -3 H

5
&% Ly N SO R rc-.: ;-:-'“ """

PSS TSN ".r‘ -

-‘
', ul‘v!cn.h..o.ll a. 3-\" o "\

TR T o T I Y T
-,

) e
" - \.._
i !
() ‘ { .)-‘

..{ NN
- o3

~ Lo p %]

L WORKSHEET No. 3 o
LR . '~- bt
’ ERROR DETECTION TECHNIGUES - D(i) WORST CASE MODULE: =
Y 4
s FACTOR (check) -1 1-0(2) 1-D(3) 1-D(4) AT
XY - - "
5 FREGUENT PEER WALKTHROUGS . 595 645 672 657
: ’ INFREQUENT PEER WALKTHROUGHS . J765 813 .840 832

" FREGUENT PROGRESS REVIENS - .802 .823 .830 844
~ INFREGUENT PROGRESS REVIENS .. .912 914 022 933 1';;:'.
N FREQUENT GUALITY AUDITS . 57 778 79 795 o

A
‘ INFREGUENT GUALITY AUDITS .891 .89 .905 .907

e
. USE OF SOFTARE PROBLEM REPORTS PRIOR YO PRT __.___. 19 19 J755 .740

- USE OF SOFTWAKE PROBLEN KEPORTS SUBSEQUENT TO PBT _______ 79 .768 192 .788 A
s <.
i USE OF SOFTWARE PROBLEM REPORTS SUBSEGUENT TC FAT _______ .801 o 810 .802
o USE OF SPECIFICATION CHANGE NOTICES (SCN‘'s) .. .849 822 850 869

USE OF ENGINEERING CHANGE NOTICES (ECN‘'s) . .843 816 886 .861 ‘

- SOFTHARE KEGUIREMENTS REVIEM (SRR) ——— 735 T4 766 812 o~
= PRELIMINARY DESIGN REVIEW (PDR} . .75 720 \762 815 :‘-\.
e CRITICAL DESIGN REVIEW (CDM) 19 M3 .738 .780 E:.
. ¢ i
' TEST READINESS REVIEW (TRR) . .837 .807 .821 .838 .
e FUNCTIONAL CONFIGURATION AUDIT (FCA} .. .860 825 836 859 .,
. :;f PHYSICAL CONFIGURATION AUDIT (PCA) .. .68 862 859 .891 R
- INFORMAL UNIT-LEVEL TESTIG .. 614 734 707 .593 f;j-ﬁ-:
. PRELININARY GUALIFICATION TESTING (PGT) .. .686 .703 727 .728
3 FORMAL GUALIFICATION TESTING (FGTY . 733 44 .758 .49
SOFTWARE INTEGRATION TESTING R .696 595 1603 16 p"::

k! A
o SYSTEM INTEGRATION TESTING . 718 .632 .680 740 "\ -
b OPERATIONAL FIELD TESTING S .706 680 669 22)
o PRODUCT OF THE VALUES CHECKED: ~ =-memmcem- commemmmon cccmoees coecceeoos 2
1 «
SA
- ABOVE PRODUCT SUBTRACTED o
s FRON ONE: mmmmmmmmen mmmmcmmeen mmmeeeees e P!

' o) 2e2) B} MES N

.‘ »)(I-: 'x
e ..»,_‘.-
’-_". ‘-‘\\'
R Nor

& 2

' o
£ e
’, R
‘.A. .._\-
i‘.-' ._ .‘
"), 1-6 RAK!
v Y
o]
\ o T
&

a_'\-

SR
7

v
B e

SO
A
o o
') .:_x
¥d
N iy
%
Y :' :
¥ WORKSHEET No. 4 o
B NODULE RELIABILITY CALCULATION - WORST CASE MODULE: A gt
C': : j':
9) ::-:
L) o
\
" o AL #CL1) substitute aepropriate A(i) and C(i) calculate
D il = : : R
w3 1.00 - D(1)#[1.00 - Ali)] substitute aepropriate A(i) and D(i) -~
¥ e
:'.P“ '_'b-’
“.l “,‘.-
£
'}' -
ALLIC(L) e
ADC(LY = : - : o
F 1,00 - DU1)#(1.00 - A(11]
| J o
" =T
e R0
o "1‘1 \
Al2)4C(2) oo
: ADC(2) = : : KN
Y 1.00 - D(2)#(1.00 - A(2}] LA
: U3
A
b :"E.@
) RS
A J
A(314C(3)
ADC(3) = . : o
1,00 - D(31#(1.00 - A(D)]
e
)
b
AC4)aC(4)
hd ADC(4) = T ee- - S R :
) 1,00 - D(4)#(1.00 - AL4)] 32
N
- .
7 o
(- RSN
o- SUN ALL THE ADC(1) TERMG =-) -==-mm-mmmmonmm- (AN

QY 1"
H

i)
el]

.;',. (C?T” :’* \
&S " . :‘
. vy I
L \/

2 L
K-, CALCULATED ENHANCEMENT FACTOR - WORST CASE ---------==----- -:.:
k.- 1-7 s
: "\' ‘:‘.‘:ﬂ
4 : .“
q

:E‘. R ",‘-:\

o

NORNSHEET No. !

INHERENT CHARACTERISTICS - C(i) NOMINAL CASE MODULE: =-~--=mmmmmmmm oo e oo oo m e e oo
FACTOR (check) ca 2 k) £is;
PREDOMINANTLY CONTRL . n 299 192 138
PREDOMINANTLY REAL TIMC o .308 308 203 166
PREDOMINANTLY INPUT/QUTPUT ——— +205 256 423 105
PREJOMINANTLY INTERARCTIVE . 20 342 264 121
PREDOMINANTLY COMPUTATIONAL e n 169 133 411
MANY DISTINCT QOPERATIONAL MISSIONS .. 388 .299 17 141
GEVERAL VARIATIONS OF OPERATIONAL MISSIONS ... 362 298 178 162
SINGLE OPERATIONAL WISSION . 323 251 194 212
MANY OPERATIONS REGUIRED - HIGHLY INTERRELATED __...__ 38t 316 151 149
MANY OPERATIONS REGUIRED - RELATIVELY INDEPENDENT .. 3n 236 187 191
FEM OPERATIONS REGUIRED - HIGHLY INTERRELATED e 346 316 168 172
FEM QPERATIONS REQUIRED - RELATIVELY INDEPENDENT . 43 240 .182 .218
EXTENSIVE HARDWARE INTERFACE REQUIREMENTS ___..__ .262 A5 .209 104
MININAL HARDWARE INTERFACE REGUIREMENTS ———— Sl 284 214 A
EXTENSIVE SOFTWARE INTERFACE REGUIREMENTS54 417 175 JA13
NINIMAL SOFTWARE INTERFACE REQUIREMENTS 307 208 VAN .189
EXTENSIVE HUMAN INTERFACE REQUIREMENTS ... 270 . 348 267 112
MINIMAL HUMAN INTERFACE REGQUIREMENTS ... 322 . 269 213 .178
KIDE RANGE OF ERROR-PRONE INPUTS . .303 236 .283 178
WINE RANGE OF ERROR-FREE INPUTS 304 .233 247 .192
NARRON KANGE GF ERROR-PRONE [NPUTS e 313 236 239 . 180
NARROW RANGE OF ERROR-FREE INPUTS e A1 237 .248 .200
SUN OF THE VALUES CHECKED: = ~=o-msmcoo cmommoooos cmmmmcoooe commeeoee
TENGRBER OF CHECKS: e e e e
e ce2) C(3 ca)

-8

L
o oA
L)

'
»

ry

Yy RN N T

e

S

At |
B e b e

-

L

I

,"\5
7 "
‘,l\ ..- .
1
':}
N WORKSHEET No. 2
L ERROR AVOIDANCE TECHNIGUES - A(i) NOMINAL CASE NODULE:
td
o FACTOR (check) 1-A(1) 1-A(2) 1-A(3) 1-A(4)
b INDEPENDENT GUALITY ASSURANCE ORGANIZATION .. 646 .653 692 697
. INDEPENDENT TEST ORGANIZATION . 696 .662 651 646
5 INDEPENDENT VERIFICATION AND VALIDATION (IV&V) . .631 661 648 622
I USE OF A SOFTMARE SUPPORT LIBRARY _______ .779 .757 2 157
b USE OF A SOFTHARE CONFIGURATION CONTROL BOARD .. 775 679 m .83t
‘ THOROUGH AND ENFORCED SOFTWARE DEVELOPMENT PLAN _______ 672 652 668 678
RIGIDLY CONTROLLED SYSTEM REGUIREMENTS SPEC ——_____ 646 617 677 698
";I RIGIDLY CONTROLLED INTERFACE DESIGN SPEC oooeo. 698 46b 630 769
i RIGIDLY CONTROLLED SOFTMARE REGUIREMENTS SPEC ______ .598 .605 634 660
)
’ RIGIDLY CONTROLLED SOFTMARE FUNCTIONAL DESIGN SPEC _._____ 637 .612 655 .656
', RIGIDLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC ... 617 608 ,610 597
. REGUIREMENTS TRACEABILITY MATRIX .. 645 681 .738 M
i
STRUCTURED ANALYSIS TOOLS . .663 694 7 742
: PROGRAM SPECIFICATION LANGUAGE (PSL) . .682 J710 .48 .752
PKOGRAM DESIGN LANGUAGE (POL} .. 643 687 ,721 714
f HIGH ORDER LANGUAGE (WOL) 674 .706 .698 .51
[+ HIERARCHICAL, TOP-DOWN DESIGN . 817 673 665 .738
'.? STRUCTUKED DESIGN .. .619 640 677 s
SINGLE FUNCTION MODULARIZATION ... 625 674 698 692
) STRUCTURED CODE . .629 .695 720 .663
v USE OF AUTOMATIC NEASUREWENT TOOLS . 761 .780 72 .755
y USE OF AUTOMATIC TEST TOOLS il 699 .78 M3 692
r
- PRODUCT OF THE VALUES CHECKED: =--m-=m-=n cmmmcmmmo mececccece coeceoeee-
. ABOVE PRODUCT SUBTRACTED
A FRON ONE: mmmmmemee e e e
All) Al2) a(3) ah)
o
', < .‘.‘:_\A
Y
kv FeY
.J ~.."-~.\
B 3 n':‘:'::i
N MR
i LAy
. —CTTY
& RPN
S Y
k- R
. RO
: 1-9 R
5 3
%
4
A% >

S
7

B R o N T g N L N N N N O W R R W W T UL O W T PP O T P DT T e

NORKSHEET No. 3

ERROR DETECTION TECHNIBUES - D(i) NOMINAL CASE MODULE:

FACTOR (check) 1-D(1) 1-D(2} 1-0(3) 1-D(4)
FREQUENT PEER WALKTHROUGHS oo .548 15 621 607
INFREQUENT PEER NALKTHROUGHS 749 J75 .805 97
FWEGUENT PROGRESS REVIEWS .. I35 .780 . 785 .802
INFREQUENT PKOGRESS REVIENS . .890 .890 .898 912
FREGUENT GuALITY @uOITS - 112 03 733 J295
INFREGUENT QuALITY AUDIYs . .862 .868 .880 .887
USE OF SOFTWARE PROBLEM KREPORYS PRIOR TO PGT ..____ 668 668 703 . 485
USE OF SOFTWARE PROBLEM REPORTS SUBSEGUENT TO PAT . 735 722 .748 742
USE OF SOFTWARE PROBLEM KEPORTS SUBSEGUENT YO F@Y .. S5 16 163 754
USE OF SPECIFICATION CHANGE MOTICES (SCN‘s) ——mmee .807 19 .811 .829
USE OF ENGINEERING CHANGE NOTICES (ECN‘s) .. 99 169 .802 .818
SOFTWARE KEGUIREMENTS REVIEW (SRR) .684 669 720 766
PRELIMINARY DESIGN REVIEW (PDR} .- T4 679 a2 W73
CKITICAL DESIGN REVIEW ¢CDR} 677 672 695 138
TtST READINESS REVIEW (TRRY . 799 . 744 . 781 797
FUnCTIONAL CONFIGURATION AUDIT (FCAY o .618 .182 192 .817
PHYSICAL CONFIGURATION AUDIT (PCA} - .831 .826 .823 855
INFORMAL UNIT-LEVEL TESTING o .Sbb .482 855 D44
PRELIMINARY GUALIFICATION TESTING (PGT)D63¢ 659 .482 679
FORMAL QUALIFICATION TESTING (FET) - .88 700 1 .698
SOF TWARE INTEGRATION TESTING ... 651 950 .618 bbb
SYSTEM INTEGRATION TESTING .. 670 .587 .633 .688
OPERATIONAL FIELD TESTIG . 673 448 437 .688

PRODUCT OF THE VALUES CHECKED: memmmecmms mmmemmmees eemcemecn seemcceeee

ABOVE PRODUCT SUBTRACTED
FROM ONE:

.-
it
L‘j
.

et
S S

IRt

.
P s
. I'Y

R

A a2

.'-'
-

Y

o WORKSHEET No. 4

¥ MCDULE RELIABILITY CALCULATION - NOMINAL CASE MODULE:

P A L

. - e
h
4 X

AlLYeC(i} substitute arpropriate /(1) and C(1) calculate

AC() = - = - - A z ——
1.00 - D(i1#{1,00 - A(i}] substitute aepropriate A(1) and D(1;

-
U
s

r 4
Lo g

L 3s 4
LR

[A{1)3C(1)
e POC(LY = -- z :
{ 1.00 - D(1)#{1.00 - A(1)]

B A(2)3C(2)
a2 = : :
1,00 - D(21#{1.00 - A(2}]

Y
.-
1
b
=
.
.
.
»
-

T
P

por (3 A(3)8C(3)
w3 = 2 ememcecccccercacrecdtecmecmcmem e cemccren—e————————————— 2 eceee—cme————ee
Al 1.00 - D(3 #01.00 - £(3)]

. aC(A) A(4)4C(4)
“a C(4) = ~—emccvcccorcccnnrmcccena- Z ee—- e e —dc e e m et e e, ———am,————— R e T

1,00 - D4)*(1.00 - A(4]]

SUM ALL THE ADC(1. TERNS == =-=-=s-emmsmmmes

RN
h,n\n.u:n N
v

SRR
e .,
o o e

—
~
~

Lo,
I e 'n.'-i’A

&
IO

T-11 CALCULATED ENHANCEMENT FACTCK - NOMINAL CASE ----------=-n--- .

o e ™y
Ta

* WL (A
LY -‘-" ‘\.“ ~.‘ -J' x',,&‘ [".
‘\k }*.’

LA RV K%

- AR mas S Ml bl Aod man Sl i Aok a4 s A L 4 a g w—w el

iR

-.FU'S‘
FrXd

e WORKSHEET No. 1
ki INHERENT CMARACTERISTICS - C(i) BEST CASE L —eomee-
= FACTOR (check) CGi) At e cia
W PECOGAINANTLY CONTROL . an .29 192 .136
,‘; PREDOMINANTLY REAL TINA . .308 .308 .203 .16
LY
?, PLCDONINANTLY INPUT/OQUTPUT . .205 .256 423 L0
! G PREDOMINANTLY INTERACTIVE . D) .342 244 Sz
i PREDOMINANTLY CONPUTATIONAL . .27 .169 133 A1
WANY DISTINCT OPERATIONAL MISSIONS .. .585 769 7 141
[St ERAL VARIATIONS OF OPERATIONAL MISSIONS L3 756 178 L1867
.
o SINGLE OPERATIONAL MISSION .. .3°3 e .94 oK
o
- MANY CPERATIONS REGUIRED - HIGHLY INTERRELATED . _____ .38 BT 51 L149
.* NANY OPERATIONS REGUIRED - RELATIVELY INDEPENDENT _______ A 23 .187 .191
K FEW OPERATIONS REGUIRED - HIGHLY INTERRELATED .. R 1) 16 .168 A2
[\
?‘:r: FCW OPERATIONS REQUIRED - KELATIVELY INDEPENDENT .343 .40 .182 218
‘el EXTENSIVE HARDMARE INTERFACE REBUIREMENTS _______ .262 A2 .209 104
W WINIMAL HARDWARE INTERFACE KEQUIREMENTS W31t .284 214 Li75
" ExTENSIVE SOFTMARE INTERFACE REGUIREMENTS . .84 A7 A7 13
o MiNIMAL SOFTWAKE INTERFACE REQUIREMENTS307 278 Jis .189
o EXTENSIVE HUMAN INTERFACE REGUIRENENTS . 270 .24y Y J12
o CNIMAL HUMAN INTERFACE REGUIREMENTS . 268 213 .78
, k:DE KANGE OF ERROR-PRONE INPUTS303 R .83 178
’:. NIDE RANGE OF ERROR-FREE INPUTS .04 053 247 162
N
. \:RRGW KANGE OF ERROR-PRONE INPUTS . 15 .236 .259 .180
o
< NA7 0N RANGE OF ERROR-FREE INPUTS _______ Wt 257 4G 290
"'-:j SUN QF THE VALUES CHECKED: = mmcm=smemc mcmemmccoc mmccccceos coommmeeee
A ABGUE SUM DIVIDED BY
THE NUMEEK OF CHECKS: meemmecoos e mee mmaen
oy (1) oz o 4
e
A
<7 o5
-4,,‘_ :.'\:
i N
-,
A I-12 O
¥ o
3 o
@ .
el
T oo 5 Wy TR TA %
P .
,.i

P

. Ma™ . LN g e LUNTRY FANAAR S “ CAR it 3 Y -
- ~ . ST SRR AN N i i i S A Cad - A, Ly - g ad T O T TN LT

, ﬂ;

-;;':‘

.'r‘

thi

WORKSHEET No. 2

<2 ERROR AVOIDANCE TECHNIGUES - A(i) BEST CASE MODULE :

e

“: FACTOR {check) 1-A(1) 1-A(2) 1-A(3) 1-A(4)
f‘ ' INDEPENDENT GUALITY ASSURANCE ORGANIZATION . .588 .600 637 639
INDEPENDENT TEST ORGANIZATION b4 .b09 .596 594
Q INJEPENDENT VERIFICATION AND VALIDATION (Ivav) . .578 .610 .593 J566
USE OF A SOFTWARE SUPPORT LIBRARY I3 .3 730 12
bt USE OF ¢ SOFTWARE CONFIGURATION CONTROL BOARD .. .730 629 .734 .192
- THOROUGH AND ENFORCED SOFTWARE DEVELOPNENT PLAN .. .620 .402 417 625
3 RIGIDLY CONTROLLED SYSTEM REGUIREMENTS SPEC oo 597 569 .631 648
Eij RIGIDLY CONTROLLED INTERFACE DESIGN SPEC - 649 A7 579 Jq22
:, RIGIDLY CONTROLLED SOFTWARE REGUIREMENTS SPEC ... 549 557 .586 L6184
, RIGIDLY CONTROLLED SOFTWARE FUNCTIONAL CESIGN SPEC_ .591 .S64 607 606
o RILIDLY CONTROLLED SOFTWARE DETAILED DESIGN SPEC568 546 558 546
j":‘ REQUIREMENTS TRACEABILITY MATRIX .. .589 .634 689 .724
S'RUCTURED ANALYSIS TOOLS .. 612 .648 .65 695
" PROGRAM SPECIFICATION LANGUAGE (PSL) .. 632 .661 .703 702
e PXOGRAM DESIGN LANGURGE (PDLY . 497 642 .75 .b6b
f;;_‘l HiGH ORDER LANGUAGE WOL: .. 626 659 .b49 603
- WIERAKCHICAL, TOP-DONN DESIGN . .£70 267 637 .488
‘ STRUCTURED DESIGN . e 592 .628 669
3 SINGLE FUNCTION MODULARIZATION ... S .623 645 047
‘;:;: STRUCTURED CODE . .L81 L649 670 .b13
; ‘;ﬁ {SE GF MUTOMATIC MEASUREMENT TOOLS .. Y Ji%6 178 706
USE OF AUTCMATIC TEST TOGLS . 650 .67 063 642
:i:f PRODUCT OF THE VALUES CHECKED: - S
ol
S ABUYE PRODUCT SUBTRACTED
o FROM ONE: e

AL AL2) A(3) A(8)

-

3

G+, A3
.l':l
¥ .

C- |
"
¥
f*'

o
>

o

ey =

(3

-

ACAKSHEET No. C

LY EAROK DETECTION TECHNIGUES - D(i) FEST CASE T p—
S T
. FXCGUENT PEER WALKTWROUGHS . Y 46
> INFREGUENT PEER MALKTHROUGHS e 13 36
FICGUENT PROGRESS REVIEWS o 709 73t
& INREQUENT PROGRESS REVIES 867 63
- FAZOUENT GUALITY AUDITS 666 oS
) INFREQUENT GUALITY eLdITS 653 640
A (ST OF SCFTWARE PRCELEN REFGRTS PRIZR 0 P6T .. ne e
" LS OF SOFTWAKE OKCELEM REPORTS SUBSEGUENT T0 P&T ___.___ 651 70
< USE CF SOFTWARE PRCELEM REFORTS SUBSEGUENT T0 F&T .. 8 667

M. PR

RYT XY

(Si OF SPECIFICATION CHANGE NOTICES (SCN's! oeooo. el =

j LUI GF ENGINEERING CHANGE NGTICES (ECN's) . s 7%

E ITWARE LEGUIREMENTS AEVIEW (SRR) .. 037 604
k FIEININGRY DESION REVIEW (PZRC . i w3
: Cv TICAU DESION RESIEW (CORD . L6534 037
) TEST READINESS REVIEW (TRED . 60 o
3 FOACTIONAL CONFIGURETION eDIT GCAY e e
. PaYSiCh. CONFIGURATION ALZIT RCAY . £13 T
DG WNTLEE TESTNG L e

B TWINARY GUATFICATION TESTING (PGTD ... R e

foRMEC QUALTTICATION TESTING 4rGT

ek

S whRE INZORATION TESTING L. st SND

P

crrw TATmA AT -

SETEM INTEOATION TEETING

CrlRATIONNL FIELS TESTING

] -
——

14

o PANCT IF THE VALUES CHECKED: — mmmeememmm mmmmeeoaen
3 AZOVE PRODUCT SURTWACTES

FeON ONE: S ———
‘
1,
¥ 1-14

R R R R T R O LS L L L COR R TL
'L\ '.{"-&'&‘“ L - 3 o -, X

- 5.‘.!', N \

7

KA

‘e
8y o
e e
1 T
N D
'-." -.'.":
(o WORKSHEET No, 4 -,;-.
F NC. JLE RELIABILITY CALCULATION - EEST CASE MODULE: =~--------—=--moormm e oo oo s r s s o
-5

‘4‘:’.:.:):
o 4
* N‘ LI
"o, 230

. Rii)*C(1) substitute aepropriate (i) and Cl1! caiculate ey
OF ADC(1) = - . = - ~meommmmmmmm—mo oo T emmmeceeememen oy
o 1.00 - D{it#(1,00 - A(i)] substitute aepropriate f{il ang D01} 'ﬁ‘
) B
A "
P -
X e
N ALRCID b
> AOC{YY = e B e e ER R —
o 1.00 - D(1M4{1.00 - A(1)] e

4
T4}
N
*-5
-
[\~ AL214C(2)
s Ty e - B T T 2 e
1,00 - D{2)#{1.00 - p(222
v.‘- R -AF
.- <
;:‘ E |
R oo
2 I’:\t-\
IR
Y

A13)e0(3) (o

090 - D(3)401,00 - A3

L 28
i
PR
byl
€1
(3]
"
»
t
[}
]
1
]
[
[}
[
]
1
]
3
1
]
'
]
]
]
1
1
1
+
[}
'
]
'
]
]
1
1
]
]
t
1
t
t
'
1
v
t
'
1
1
1
[
'
[
:
4
L]
)
.
1
1
1
t
’
1
'
[l
[
s

.-.-..
25 AL L
X ¥ e a
Y FE B I
£ A B k& =
""'.":'lr'g{"
TAARRAAE |

g
5
|3

AT8)3C(4) i
BICI4) = memmmmmmmedmecmemmee % M emeememeemseemeeeemeeemeenoee S

3

~
1,00 - D(41#(1,00 - 4)] N
N
.‘-. ‘_‘, X
> =4
. % < W
A Cs

SUK ALL ThE ADT(:: "EMS == =r weee oo

N P,
) o
~ R

"

'(.q,' . “-1:;_
. (C(“PT: o
\ v e id

. V.

a 5) / .
:‘ \ Y '<-.'~l

T-15 CALCULATED ENHANCEMENT FACTCR - BEST CASE --------=nm-- Y

Frrees
N
W

;.“- “:."~h‘-‘.\"~'~k,-"- AW

O
1
-w‘ - .’»-‘

d OO
‘;.\‘.“‘a h}'ﬁ Y W ‘:".\
.““"l ?.Q‘h:‘l A

LA A S At ¢ Sl e grat e At i Bone ol A Alt SPAC S Bt SR At it it i abell /i Suciati’ mE L. - Cal e Pl B Padha

AR |
it aanitnnde

oy

MISSION
of
Rome Avr Development Center

RADC plans and executes reseanrch, development, test
and selected acquisition proghrams Lin support of
Command, Control, Communications and Intelldigence
(C31) activities. Technical and engineering
suppont within anreas of competence 44 provided %o
ESD Program Offices (POs) and othern ESD elements

to penform effective acquisition of C31 systems.
The areas of technical competence include
communications, command and controf, battle
management, information processing, surnveillance
sensons, intelligence data collection and handling,
sclid state sciences, electromagnetics, and
propagation, and electronic, maintainability,

:
and compatibility. is
3

L0 00 500 00 530 5 0 905 S 20K SN 90 S A LA K 9

" 2 S g e TR B e~ aBg o .
U

e -

F N

T O
—
< O
I
-

s

X, |'<! le,u"l'J‘ .‘-’"t’r‘r_ » RSN MR oo o A0 T

-

'h

'.

AL LR R e e e e lw e - - . . a
b \N. " B I o Sl R P P S N S L LU ST SISO TP
] o R LN i PR T Sy S o ~,

1A, N U ’Q.",, & e S T e TR L RSN n\. »

